Cleaning the Gen4 Static Eliminators

It has been over two years since EXAIR first brought our Gen4 Static Eliminators to market with improved performance, materials and durability.  The new design features continue to provide our customers with reliable, rugged and problem solving static eliminators.

More recently our Gen4 product line was completed by integrating these same beneficial features in the Gen4 Ionizing Bars, Gen4 Super Ion Air Knives, and Gen4 Standard Ion Air Knives.

There are two common ways that a Static Eliminator will start to underperform; contamination buildup and point degradation.  To create ions from a metal point, a high voltage is needed.  With 5,000 volts forcing its way into a confined area, the energy behind making an ion creates a corona field.  Any contamination near or around that point will produce a small amount of charred material.  The more contamination in the surrounding area, the faster the buildup will occur. Once a sharp point is coated, the ion production begins to decrease.

The other issue is with metal point degradation.  With the cycle of heating and cooling, the material will start to lose the sharpness of the point over time.  Like a wick used in a candle, you lose a little bit each time.  For both methods above, once the point sharpness is reduced, the dissipation time to remove static starts to increase.

For any “forensics” analysis with the Static Eliminators, you should have a model 7905 Static Meter.  Besides viewing the ion points, the Static Meter can help determine the severity of the function of the ion points.  If cleaning is required, you can use a soft-bristled brush to remove any charred contamination from the point and the base area.  Make sure that the power is turned off before cleaning.  For resistor-based Static Eliminators, the metal ion pins are replaceable.  This is model 901188.  This added feature makes a cost-effective way to keeping the points sharp, and the Static Eliminators like new.  The video below shows how to clean and replace the ion points.

Contact any of our Application Engineers if you have any additional questions about cleaning, about a new application or about potential solutions to static related problems.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

A Tale of Two Super Ion Air Knives

A manufacturer of plastic bottles had a problem with static charge. Right after the bottles are extruded and cooled, they have an apparatus that “unscrambles” them and places them, single file, onto a conveyor. It does so with some fabric belts and plastic rollers. If you know anything of static electricity, dear reader, you probably recognize that there aren’t too many better ways to generate a static charge than to rub plastic against plastic, or (even worse) plastic & fabric together.  Here’s a prime example of the kind of static charge you can get, just from unrolling plastic film.

The separation of the non-conductive surfaces (like when this plastic film is unrolled) is capable of generating an incredible amount of static charge.

Now, the bottle makers didn’t have a static meter, but they didn’t need one to know they had issues:  the bottles that the “unscrambler” was putting on the belt were still very much “scrambled.”  They installed a Model 112209 9″ GEN4 Super Ion Air Knife Kit, to blow ionized air up from under the bottles as they entered the belt conveyor, and they did see what they’d call an improvement, but not quite what they’d call a solution.

Unfortunately, dissipating the static from just about half of the surface area of the bottle was still leaving them with half a problem.  However, by adding a Model 112009 9″ GEN4 Super Ion Air Knife (the 112209 Kit’s Power Supply has two outlets, and its Filter Separator & Pressure Regulator are capable of handling the flow to two 9″ Air Knives,) they were able to blow ionized air down from the other side, and up from where the first one was installed.  A soft “breeze” was all it took…a stronger air flow would have worked against the “unscrambler” anyway…because even at very low supply pressures, the Super Ion Air Knives produce an extremely fast static dissipation rate.

Even with a 5psig supply…which makes for just a “whisper” of air flow, the EXAIR GEN4 Super Ion Air Knife eliminates a 5kV charge in under half a second.

If you’ve got problems with static charge, we’ve not only got improvements; we’ve got solutions. Give me a call to find out how we can help.

Basics of Static Electricity

Here in the Northern Hemisphere, we are in the middle of winter and that means extremely dry air, and frequent shocks when reaching for a door knob after walking across a carpeted surface.  While a shock is mildly uncomfortable and can be annoying to us, the presence of static electricity in an industrial manufacturing process can be much more problematic.

Problems that static cause range from operator discomfort to increased downtime to quality issues.  Dust can cling to product, product can cling to itself, rollers, frames, or conveyors. Materials may tear, jam, curl and sheet fed items can stick and mis-feed. Hazardous sparks and shocks can occur, possibly damaging sensitive electronics.

EXAIR has put together a useful tool, the Basics of Static Electricity white paper with Interactive Regions to help a person learn more about static.

Basics of Static Electricity

 

Topics covered include Electron Theory, Causes of Static Electricity, Triboelectric Series chart, and Types of Static Generation.  Also, the white paper covers the areas of How to Control Static Charge Buildup, Determining the Source of the Static Buildup, Eliminating or Minimizing the Source Causing the Buildup, and Treating Static Buildup.

The Treating Static Buildup is a comprehensive review of the EXAIR Static Elimination products and how each technology is best applied to different processes and applications.

To receive your copy of the Basics of Static Electricity white paper, click the photo above or the link here.

If you would like to talk about static electricity or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Ion Bars Eliminate Jam In Fiberglass Production

Last week I worked with a specialty glass manufacturer who was experiencing a static issue in their fiberglass mat production. Their particular production cycle consists of a rotary spinning process where molten glass exits a furnace and goes into a cylinder with several holes that rotates at high speed, causing the glass to be “pushed” through the holes. Upon exiting the cylinder, the fibers are blown down on to a conveyor belt underneath, treated with a binder and pressed together, then sent to an oven to cure. After the sheets exit the oven, they are air cooled, cut to the desired length, then sent to a sorter that directs the material to collection bins, based on thickness and length. It is at this point that they were seeing the parts start to “bunch” up, which caused the system to be shut down so an operator could manually clear the jam and sort the mats. The customer has experienced static issues before in other parts of their plant and took some readings and were seeing a 4 kV charge on the surface of the mats.

After discussing the details of the application, I recommended they use our 24″ Ionizing Bar, the width of their widest mat. The Ionizing Bars produce a high concentration of positive and negative ions to eliminate the surface static of an object when mounted within 2″ of the surface of the material. At 2″ away, the units are capable of dissipating a 5kV charge in less than half a second. By placing a unit above and below the exit point of the sorter, they would effectively remove the surface charge and eliminate the potential jam.

Ionizing Bars Work
Ionizing Bars are effective up to 2″ away and require no compressed air to operate.

Our Ionizing Bars are available in lengths from 3″ up to 108″ for a variety of small or wide surface treatment applications. For assistance selecting the best product for your specific requirements, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Ion Air Jet Improves Teflon Gasket Cutting

If your familiar with our blog, you may have noticed that a common theme lately has been static.  Take for example our recent blog titled  Static Can Become A Big Issue With Winter Approaching , details how static was negatively affecting an automobile instrumentation assembler’s production or another one titled Static Electricity – What is it? , providing a better general understanding of the phenomena. Here in Cincinnati we’ve had some relatively mild temperatures lately but this weekend it was just downright cold. Now that our furnace is running, the humidity in the house is starting to be removed which not only wreaks havoc on our hardwood floors, but in winter’s past, it seemed like every time one of us touched each other or something metal , we got “zapped” due to static. As many homeowners do, I’ve purchased several humidifiers and strategically placed them throughout the house which has helped immensely. While this is a good approach for a residence, it’s not as easy an alternative when dealing in an industrial setting.

I recently worked with a customer in the northeastern U. S. who manufacturers Teflon gaskets. As the Teflon tube exits the extruder, a blade passes by and cuts a very thin cross section of material which drops into a collection bin underneath. During the spring and summer months, the process was running seamlessly but over the past couple weeks, temperatures in the area have dropped, causing the company to turn on the large, gas heaters on the production floor. Now that the air is starting to dry out, they are beginning to see the gaskets cling to the blade and surrounding tooling which is not only causing damage to the part itself but it’s also resulting in production delays.

Since the area they are needing to treat is relatively small, I recommended they use our Ion Air Jet. The Ion Air Jet  provide a focused stream of ionized air to eliminate the surface static of a material or object. By incorporating a pressure regulator to operate at low pressure, they would be able to reduce the outlet force and velocity, allowing them to gently blow the airflow across the area as to not disrupt the collection of the parts.

NEW Ion Air Jet
Static can cause a variety of nuisances in industrial settings ranging from damage to sensitive electronics, machine jams, parts or sheets sticking together, and personnel shock just to name a few. If you need any help selecting the best EXAIR product for your needs, don’t hesitate to ask one of our application engineers for assistance. I’d be shocked if we couldn’t help. (I know, not punny).

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Static Can Become A Big Issue With Winter Approaching

Many automotive parts are made of plastic, and with nonconductive materials, static electricity can become a big problem, especially in cooler climates.

A customer with whom I spoke recently assembles instrumentation clusters for vehicles.  The assembly process started by using a regular compressed air gun to blow the surfaces clean before assembly.  The operator would place a polycarbonate applique onto a lighting fixture.  Then a clear polycarbonate cover would go over both parts.  To complete the cluster assembly, an ultrasonic welder would weld the plastic studs around the outside edge and seal the parts together.  This completed the assembly process.  However, during inspection, they started to notice more visual defects after the welding process.  The cause was debris that became lodged between the applique and the clear cover. The debris was still present even after blowing.  If the debris wasn’t cleared prior to welding, the entire assembly would have to be scrapped due to the visual defect. The customer knew about EXAIR from previous projects and so decided to get help from us again to solve this expensive reject situation.

Initially, blowing the plastic components with regular compressed air before assembling and welding  worked well, but then they started seeing an increase in the reject rate.  I came to find out that they were located in Michigan. So I asked the customer about the weather there recently. They indicated that was getting cooler as we begin to head into Fall and Winter. As cooler weather is among us, static can be generated much easier because cool air cannot hold as much moisture. And with less moisture, which aids to eliminate a static charge, the likelihood that static will generate goes up.  Once static is generated on plastic components, dust and debris likes to stick to the surface.  Static charges are very strong, and even with blowing compressed air, the debris can still cling to edges or even “jump” to another location.  This was a manual operation and they needed to remove the static from the surface in order to eliminate the debris from the assembly.

8493-ion-air-gun

I recommended the model 8493 Ion Air Gun Kit. It combines static removal capability with a blowing force that one would normally associate with a compressed air blowgun.  The kit includes the Ion Air Gun, power supply, filter and regulator.  The Ion Air Gun is designed with a 5:1 amplification ratio; minimizing compressed air usage and maximizing ionized airflow.  With the regulator, you can control the force from a “blast” to a “breeze”.  The ionized airflow eliminates the static from the plastic surfaces, allowing the airstream to remove any dirt and debris.  They replaced their current air gun with the EXAIR Ion Air Gun, and the rejection rate decreased to the acceptable levels that they were seeing in the summer months.

Being that the winter months are approaching, you may want to re-evaluate your processes.  If you are working with non-conductive materials like plastic, wood, glass, or textiles, EXAIR has a variety of Static Eliminators that can save you from getting headaches, losing money, and saving time.  With our customer above, they weren’t able to get ahead of the static issue, and it created many problems until they investigated using EXAIR Static Eliminators. Get rid of your static headaches by using an EXAIR Static Eliminator today.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Static Electricity – What is it?

Now that the air is cooling and the humidity is dropping, you may often experience the phenomena of static electricity, and the resultant shock when touching something metal. As a child, you may have learned about static electricity by rubbing a balloon on your head and then seeing it stick to the wall. What is the science behind static electricity?

3864437099_92eb16d611_z

All materials are made up of atoms, which have a positively charged core called the nucleus surrounded by a cloud of negatively charged electrons.  Each material is different, and in some types of materials the positive nucleus has a very strong pull on the electrons while in other materials the pull is very weak.  If we were to put a strong  pull material in contact with a weaker pull material, atoms from the weak pull material will migrate, and when the materials are separated, additional electrons will remain with the strong pull material.  Due to the overall increase in electron quantity, the material becomes negatively charged and the other material becomes positively charged. If the materials are rubbed together, the opportunities for the electron migration increases, and thus more electrons are exchanged.

Electrons build up more easily in dry conditions. When the air has humidity, static build up is less common because a very thin layer of water molecules coat most surfaces, which allows the electrons to move more freely and make most materials conductive and static free.

In some cases, static electricity can be a good thing – laser printers and photocopiers use static electricity to transfer ink from the drum to the paper.  Also, some power plants and chemical factories use static electricity  to remove pollutants in a process that takes place within the smokestack.

But generally when EXAIR gets involved, it is because the static electricity is causing an unwanted build up of static charge that affects a manufacturing process. The results of a static charge imbalance can result in a shock to an operator, materials sticking together, poor print quality, sensor or counter malfunctions, bad surface finish, or any number of other problems.

EXAIR offers systems for total static control, such as the Super Ion Air Knife and Ionizing Bars for wide applications such as paper, film and plastic webs, the Super Ion Air Wipe for narrow, continuously moving materials such as wire, tube, or extrusions.  Also offered are the handheld Ion Air Gun for use on three dimensional parts prior to assembly, packaging painting or finishing. Other options include the Ion Air Cannon for limited space or remote mounting applications, Ion Air Jet for tight spaces and concentrated airflow, and the Ionizing Point to provide close distance and accurate static removal.

siawapp_299x374
Super Ion Air Wipe

To discuss your static elimination concerns , feel free to contact EXAIR and one our  Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Spark Photo Credit – Eric Skiff – via Creative Commons License