An important component of your compressed air system is the supply piping. The piping will be the middle man that connects your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use. You’ll also need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of our previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?)
Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.
After determining the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the “Best Practices for Compressed Air Systems” from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.
Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the “Compressed Air and Gas Institute Handbook” provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.
Jordan Shouse
Application Engineer
Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_JS
Images Courtesy of the Compressed Air Challenge and thomasjackson1345 Creative Commons.