Compressed Air Purity Classes & ISO 8573-1. What Does it Mean for You?

The compressed air coming directly from your air compressor will usually require further treatment & preparation before it can be used. It’ll contain particulate matter, moisture, and hydrocarbons that the intake filter won’t remove…remember, it’s there to protect the compressor itself against damage from larger particulate. Smaller particulate and other contaminants that can affect air operated products & tools will still need to be addressed, after compression. The degree to which this additional treatment is necessary is dictated by what you’re using your compressed air for.

ISO 8573-1:2010 – Compressed air – Part 1: Contaminants and Purity Classes quantifies the quality of the air according to three properties, into different classes:

Per the descriptions above, here are the criteria by which compressed air purity is classified in these three categories. Certain applications can call for different classes for these three categories (more on that in a minute).
  • Maximum particle size & concentration of solid contaminants. These can come from rust on the inside of the distribution piping, particulate generated by wear of air system components, and atmospheric contamination that the compressor’s intake filter doesn’t catch.
  • Maximum pressure dew point. No matter where your compressor is located, the air it pulls in contains some amount of water vapor. Dew point is the temperature at which it will condense at a given pressure. As long as the compressed air temperature is above that dew point, there won’t be any water (in liquid form) in it.
  • Maximum oil content. This most often is due to carryover from oil lubricated compressors, but can come from atmospheric oil (or other hydrocarbon) vapor drawn into the compressor’s intake.

So…what does this mean to you, relating to your use of compressed air? Well, it largely comes down to the nature of your application. Whatever is in your compressed air supply will be in contact with whatever the air comes in contact with. If a machinist is using a Safety Air Gun to blow chips & coolant from machined parts, they’re not going to be particularly concerned with this specification from a regulatory standpoint. If those parts are going straight from the machine shop to a paint booth, they’re certainly going to want to use air that’s free of particulate, moisture, and oil. All of those things will, quite noticeably, affect the quality of the painted finish. Filter Separators and Oil Removal Filters installed at the point of use will take care of that. A case could be made for a purity specification and regular testing of their compressed air, but this really just falls under the confines of good engineering practice.

Compressed air use in applications where it can come in contact with food or beverages intended for consumption (by people AND animals, according to the Federal Food, Drug, and Cosmetic Act) is considered a critical factor for cleanliness. They reference guidelines from the British Compressed Air Society (BCAS) to specify purity classes for both direct and indirect contact with food and beverage products:

Direct contact requires testing and compliance to Class 2:2:1 per the above table means:

  • Particulate Class 2 – particle concentration, by particle size, in concentrations no greater than:
    • 400,000 particles sized 0.1-0.5 microns, per cubic meter
    • 6,000 particles sized 0.5-1.0 microns, per cubic meter
    • 100 particles sizes 1.0-5.0 microns, per cubic meter
  • Maximum pressure dew point Class 2 – vapor pressure dew point must be less than 40°F (40°C) at the maximum pressure of the compressed air system.
  • Oil content Class 1 – concentration must be less that 0.001 milligrams per cubic meter

Examples of direct contact applicable to the use of EXAIR Engineered Compressed Air Products include blowing air for cooling, moisture removal, coating layer distribution, etc., of unpackaged food product.

EXAIR Stainless Steel Super Air Knives are popular in food processing applications (left to right): removing excess moisture prior to flash freezing of fish filets, preventing clumping while packaging shredded cheese, and (my personal favorite) ensuring a consistent and even glazing of fresh, delicious doughnuts.

Line Vac Air Operated Conveyors and Vortex Tubes are also used in direct contact applications in the food industry:

316SS Threaded Line Vac conveys bulk grain in a distillery (left). Vortex Tube rapidly sets melted chocolate in a mold (right).

Indirect contact is slightly (but JUST slightly) less restrictive: those are Class 2.4.2. Particulate and oil content classes remain the same, but dew point can be as high as 37°F (3°C). This is where the air the air is coming into contact not with the consumable product itself, but, for example, the packaging or container:

Atomizing Spray Nozzles rinse bottles prior to labeling (left), 1″ Flat Super Air Nozzle blows off label to ensure proper scanning by sensor (center), Line Vac conveys canned goods (right).

EXAIR Corporation is committed to helping you get the most out of our products – and your compressed air system. If you have questions, I can talk about compressed air all day – and oftentimes I do! Let’s talk.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

ISO 8573-1 Chart by Compressed Air Best Practice.

Regulators and Filters for Compressed Air

I would like to dive into the realm of filters and regulators. Majority of EXAIR products use compressed air to coat, conserve, cool, convey or clean. So, to keep the product running efficiently, we need to supply them with clean, dry, pressurized air. We offer a line of filter separators, oil removal filters, and regulators that can supply enough pressure and flow to keep the EXAIR products performing for a very long time. If we look at each individual item, we can see how they can play an important part in your compressed air system.

Regulators are used to control the amount of air pressure being supplied to your EXAIR products. This is important if you are trying to control the flow, force, and/or conveyance rate. One issue with regulators is “droop”. Droop is the amount of pressure drop when you flow through a regulator. If you set the pressure of a regulator with no flow, to let’s say 80 psig (5.5 barg). Once you start flowing, you will see the downstream pressure fall. This is dependent on the size of the regulator and the valve inside. This is very important because if you need 80 psig (5.5 barg) downstream of the regulator feeding an EXAIR product and the droop brings it to 30 psig (2 barg), you will not have enough flow for your EXAIR product, losing performance. EXAIR recommends a specific regulator for each of our products. We tested our products with the recommended regulators to make sure that you are able to get the best performance. If you do use another manufacturer’s regulator, make sure you are able to flow the correct amount of air at the pressure you need. Not all ¼” regulators flow the same.

Pressure Regulator
Pressure Regulator

Filter separators are used to remove liquid condensate and contamination from the compressed air stream. They have a 5 micron filter and work very well if you get a slug of water or oil into your compressed air system. They use mechanical separation to remove the large particles of dirt and water from the air stream. Most facilities have some type of compressed air dryer in their system. This will dry the compressed air. But, if a system failure occurs, then water, oil, and dirt are pushed into the compressed air lines and perhaps into your EXAIR products. Even if you have good quality air, it is important to keep your products protected. An ounce of prevention ….

Oil Removal Filter
Oil Removal Filter

 

The oil removal filters are used to keep the compressed air even cleaner yet. They work great at removing very small particles of dirt and oil. Without an oil removal filter, dirt particles and oil particles can collect in “dead” zones within the compressed air lines. Over time, a tacky glob forms. As it grows, it can break off and get into the air stream affecting pneumatic devices. The oil removal filter will be able to help eliminate the long term effects in your compressed air system. As a note, oil removal filters are not great for bulk separation. If you have a system with lots of water, you will need a filter separator in front of the oil removal filter to optimize the filtration. With the oil removal filters, the media is a barrier to collect the small particles of dirt and oil. If a slug of water or oil tries to go through, it will block a portion of the element off until it is forced through. This will increase the velocity and pressure drop of the element. With the high velocity, as the slug makes its way through the media, it can spray, re-entraining the liquid particles.

Now that we went through our pneumatic products, how do we use them together to get the best supply of compressed air? With both types of filters, we always want them to be upstream of the regulator. This is because the velocity is lower at higher pressures. Lower velocities mean smaller pressure drops which is good in filtration. If we can analyze the compressed air systems, I would like to categorize it into a good and premium quality. To supply a good quality of compressed air, you can have the compressed air run through the filter separator then a regulator. To produce the premium quality of compressed air, you can have your compressed air run through the filter separator, the oil removal filter, and then the regulator. With clean quality air, your EXAIR products will provide you with effective, long-lasting performance without maintenance downtime.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb