Opportunities To Save On Compressed Air

If you’re a regular reader of the EXAIR blog, you’re likely familiar with our:

EXAIR Six Steps To Optimizing Your Compressed Air System

This guideline is as comprehensive as you want it to be.  It’s been applied, in small & large facilities, as the framework for a formal set of procedures, followed in order, with the goal of large scale reductions in the costs associated with the operation of compressed air systems…and it works like a charm.  Others have “stepped” in and out, knowing already where some of their larger problems were – if you can actually hear or see evidence of leaks, your first step doesn’t necessarily have to be the installation of a Digital Flowmeter.

Here are some ways you may be able to “step” in and out to realize opportunities for savings on your use of compressed air:

  • Power:  I’m not saying you need to run out & buy a new compressor, but if yours is
    Recent advances have made significant improvements in efficiency.

    aging, requires more frequent maintenance, doesn’t have any particular energy efficiency ratings, etc…you might need to run out & buy a new compressor.  Or at least consult with a reputable air compressor dealer about power consumption.  You might not need to replace the whole compressor system if it can be retrofitted with more efficient controls.

  • Pressure: Not every use of your compressed air requires full header pressure.  In fact, sometimes it’s downright detrimental for the pressure to be too high.  Depending on the layout of your compressed air supply lines, your header pressure may be set a little higher than the load with the highest required pressure, and that’s OK.  If it’s significantly higher, intermediate storage (like EXAIR’s Model 9500-60 Receiver Tank, shown on the right) may be worth looking into.  Keep in mind, every 2psi increase in your header pressure means a 1% increase (approximately) in electric cost for your compressor operation.  Higher than needed pressures also increase wear and tear on pneumatic tools, and increase the chances of leaks developing.
  • Consumption:  Much like newer technologies in compressor design contribute to higher efficiency & lower electric power consumption, engineered compressed air products will use much less air than other methods.  A 1/4″ copper tube is more than capable of blowing chips & debris away from a machine tool chuck, but it’s going to use as much as 33 SCFM.  A Model 1100 Super Air Nozzle (shown on the right) can do the same job and use only 14 SCFM.  This one was installed directly on to the end of the copper tube, quickly and easily, with a compression fitting.
  • Leaks: These are part of your consumption, whether you like it or not.  And you shouldn’t like it, because they’re not doing anything for you, AND they’re costing you money.  Fix all the leaks you can…and you can fix them all.  Our Model 9061 Ultrasonic Leak Detector (right) can be critical to your efforts in finding these leaks, wherever they may be.
  • Pressure, part 2: Not every use of your compressed air requires full header pressure (seems I’ve heard that before?)  Controlling the pressure required for individual applications, at the point of use, keeps your header pressure where it needs to be.  All EXAIR Intelligent Compressed Air Product Kits come with a Pressure Regulator (like the one shown on the right) for this exact purpose.
  • All of our engineered Compressed Air Product Kits include a Filter Separator, like this one, for point-of-use removal of solid debris & moisture.

    Air Quality: Dirty air isn’t good for anything.  It’ll clog (and eventually foul) the inner workings of pneumatic valves, motors, and cylinders.  It’s particularly detrimental to the operation of engineered compressed air products…it can obstruct the flow of Air Knives & Air Nozzles, hamper the cooling capacity of Vortex Tubes & Spot Cooling Products, and limit the vacuum (& vacuum flow) capacity of Vacuum Generators, Line Vacs, and Air Amplifiers.

Everyone here at EXAIR Corporation wants you to get the most out of your compressed air use.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

Regulators and Filters for Compressed Air

I would like to dive into the realm of filters and regulators. Majority of EXAIR products use compressed air to coat, conserve, cool, convey or clean. So, to keep the product running efficiently, we need to supply them with clean, dry, pressurized air. We offer a line of filter separators, oil removal filters, and regulators that can supply enough pressure and flow to keep the EXAIR products performing for a very long time. If we look at each individual item, we can see how they can play an important part in your compressed air system.

Regulators are used to control the amount of air pressure being supplied to your EXAIR products. This is important if you are trying to control the flow, force, and/or conveyance rate. One issue with regulators is “droop”. Droop is the amount of pressure drop when you flow through a regulator. If you set the pressure of a regulator with no flow, to let’s say 80 psig (5.5 barg). Once you start flowing, you will see the downstream pressure fall. This is dependent on the size of the regulator and the valve inside. This is very important because if you need 80 psig (5.5 barg) downstream of the regulator feeding an EXAIR product and the droop brings it to 30 psig (2 barg), you will not have enough flow for your EXAIR product, losing performance. EXAIR recommends a specific regulator for each of our products. We tested our products with the recommended regulators to make sure that you are able to get the best performance. If you do use another manufacturer’s regulator, make sure you are able to flow the correct amount of air at the pressure you need. Not all ¼” regulators flow the same.

Pressure Regulator
Pressure Regulator

Filter separators are used to remove liquid condensate and contamination from the compressed air stream. They have a 5 micron filter and work very well if you get a slug of water or oil into your compressed air system. They use mechanical separation to remove the large particles of dirt and water from the air stream. Most facilities have some type of compressed air dryer in their system. This will dry the compressed air. But, if a system failure occurs, then water, oil, and dirt are pushed into the compressed air lines and perhaps into your EXAIR products. Even if you have good quality air, it is important to keep your products protected. An ounce of prevention ….

Oil Removal Filter
Oil Removal Filter

 

The oil removal filters are used to keep the compressed air even cleaner yet. They work great at removing very small particles of dirt and oil. Without an oil removal filter, dirt particles and oil particles can collect in “dead” zones within the compressed air lines. Over time, a tacky glob forms. As it grows, it can break off and get into the air stream affecting pneumatic devices. The oil removal filter will be able to help eliminate the long term effects in your compressed air system. As a note, oil removal filters are not great for bulk separation. If you have a system with lots of water, you will need a filter separator in front of the oil removal filter to optimize the filtration. With the oil removal filters, the media is a barrier to collect the small particles of dirt and oil. If a slug of water or oil tries to go through, it will block a portion of the element off until it is forced through. This will increase the velocity and pressure drop of the element. With the high velocity, as the slug makes its way through the media, it can spray, re-entraining the liquid particles.

Now that we went through our pneumatic products, how do we use them together to get the best supply of compressed air? With both types of filters, we always want them to be upstream of the regulator. This is because the velocity is lower at higher pressures. Lower velocities mean smaller pressure drops which is good in filtration. If we can analyze the compressed air systems, I would like to categorize it into a good and premium quality. To supply a good quality of compressed air, you can have the compressed air run through the filter separator then a regulator. To produce the premium quality of compressed air, you can have your compressed air run through the filter separator, the oil removal filter, and then the regulator. With clean quality air, your EXAIR products will provide you with effective, long-lasting performance without maintenance downtime.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Video Blog: Effectiveness of Filtering Your Compressed Air

The video below will give a brief demonstration on the importance of point of use filtration in order to remove unwanted material such as water, scale, particulate and oil from your compressed air stream. Point of use or end-use filtration will keep your air clean and your compressed air products running smooth.  If you have any comments or questions, please feel free to contact us.

 

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Dirty Compressed Air Consequences Are Avoidable

I would like to discuss the importance of clean and dry filtered air.  This all comes from some discussions I have had with customers over my time here at EXAIR, as well as from my time in the machine tool industry. It is notable to state that we simply ask for clean/dry air to run through our products, not “instrument” or “process” air which is typically held at a different pressure, temperature, or volume and can be more expensive to generate. All of EXAIR’s products use general plant air and can be cleaned up with simple point of use filters.

Clean and dry compressed air is essential for ensuring a long and easy life of almost any compressed air product.   One product in particular that I have some data on is the EXAIR Line Vac.  The pictures below show the inside wall of a Stainless Steel Line Vac.  This unit was used in a harsh outdoor environment.   The compressor was not maintained and did not have any form of filtration on the lines feeding the Line Vac unit. The first picture shows where all the dirt and particulate were impacting the internal generator wall as it entered the air chamber.

Damaged Generator

The two dark grey marks are actually the impact points on the unit.   There is only one air inlet on the Line Vac, this means that the unit was taken apart during the two months and actually inspected then put back together and the generator was rotated slightly during this process.  These spots are similar to what sandblasting does to metal, just to illustrate how much particulate was in the air stream. Since the air has not yet reached its full velocity within the Line Vac, it has left only those visible surface blemishes.

As the air begins to exit the array of small generator holes it begins to rapidly increase in velocity while it is trying to expand to atmospheric conditions.  Because of this increased velocity, the wear the generator holes experience is greater and as seen below it is causing some extreme wear.

Worn Generator Holes

To give you an idea of what a new generator should look like is below. Here you can see uniform holes that go precisely through the generator.

IMG_4283

To prevent a disaster like this from happening to your end-use compressed air products, all you need are some simple, low maintenance filters.   EXAIR offers dirt / water filter separators that will filter your compressed down to 5 micron particulate size.   The will catch the good majority of rust, water, and dirt within your compressed air system.   Then you can also install an oil removal filter which will filter all oils and particulate out of your compressed air system down to 0.03 micron particulate level.

Each of these units are great point of use filtration to keep any of your processes from experiencing what this Line Vac experienced.   If you have any questions about the quality of your compressed air or why you are seeing failures in product on your compressed air system, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF