Compressed Air Purity Classes & ISO 8573-1. What Does it Mean for You?

The compressed air coming directly from your air compressor will usually require further treatment & preparation before it can be used. It’ll contain particulate matter, moisture, and hydrocarbons that the intake filter won’t remove…remember, it’s there to protect the compressor itself against damage from larger particulate. Smaller particulate and other contaminants that can affect air operated products & tools will still need to be addressed, after compression. The degree to which this additional treatment is necessary is dictated by what you’re using your compressed air for.

ISO 8573-1:2010 – Compressed air – Part 1: Contaminants and Purity Classes quantifies the quality of the air according to three properties, into different classes:

Per the descriptions above, here are the criteria by which compressed air purity is classified in these three categories. Certain applications can call for different classes for these three categories (more on that in a minute).
  • Maximum particle size & concentration of solid contaminants. These can come from rust on the inside of the distribution piping, particulate generated by wear of air system components, and atmospheric contamination that the compressor’s intake filter doesn’t catch.
  • Maximum pressure dew point. No matter where your compressor is located, the air it pulls in contains some amount of water vapor. Dew point is the temperature at which it will condense at a given pressure. As long as the compressed air temperature is above that dew point, there won’t be any water (in liquid form) in it.
  • Maximum oil content. This most often is due to carryover from oil lubricated compressors, but can come from atmospheric oil (or other hydrocarbon) vapor drawn into the compressor’s intake.

So…what does this mean to you, relating to your use of compressed air? Well, it largely comes down to the nature of your application. Whatever is in your compressed air supply will be in contact with whatever the air comes in contact with. If a machinist is using a Safety Air Gun to blow chips & coolant from machined parts, they’re not going to be particularly concerned with this specification from a regulatory standpoint. If those parts are going straight from the machine shop to a paint booth, they’re certainly going to want to use air that’s free of particulate, moisture, and oil. All of those things will, quite noticeably, affect the quality of the painted finish. Filter Separators and Oil Removal Filters installed at the point of use will take care of that. A case could be made for a purity specification and regular testing of their compressed air, but this really just falls under the confines of good engineering practice.

Compressed air use in applications where it can come in contact with food or beverages intended for consumption (by people AND animals, according to the Federal Food, Drug, and Cosmetic Act) is considered a critical factor for cleanliness. They reference guidelines from the British Compressed Air Society (BCAS) to specify purity classes for both direct and indirect contact with food and beverage products:

Direct contact requires testing and compliance to Class 2:2:1 per the above table means:

  • Particulate Class 2 – particle concentration, by particle size, in concentrations no greater than:
    • 400,000 particles sized 0.1-0.5 microns, per cubic meter
    • 6,000 particles sized 0.5-1.0 microns, per cubic meter
    • 100 particles sizes 1.0-5.0 microns, per cubic meter
  • Maximum pressure dew point Class 2 – vapor pressure dew point must be less than 40°F (40°C) at the maximum pressure of the compressed air system.
  • Oil content Class 1 – concentration must be less that 0.001 milligrams per cubic meter

Examples of direct contact applicable to the use of EXAIR Engineered Compressed Air Products include blowing air for cooling, moisture removal, coating layer distribution, etc., of unpackaged food product.

EXAIR Stainless Steel Super Air Knives are popular in food processing applications (left to right): removing excess moisture prior to flash freezing of fish filets, preventing clumping while packaging shredded cheese, and (my personal favorite) ensuring a consistent and even glazing of fresh, delicious doughnuts.

Line Vac Air Operated Conveyors and Vortex Tubes are also used in direct contact applications in the food industry:

316SS Threaded Line Vac conveys bulk grain in a distillery (left). Vortex Tube rapidly sets melted chocolate in a mold (right).

Indirect contact is slightly (but JUST slightly) less restrictive: those are Class 2.4.2. Particulate and oil content classes remain the same, but dew point can be as high as 37°F (3°C). This is where the air the air is coming into contact not with the consumable product itself, but, for example, the packaging or container:

Atomizing Spray Nozzles rinse bottles prior to labeling (left), 1″ Flat Super Air Nozzle blows off label to ensure proper scanning by sensor (center), Line Vac conveys canned goods (right).

EXAIR Corporation is committed to helping you get the most out of our products – and your compressed air system. If you have questions, I can talk about compressed air all day – and oftentimes I do! Let’s talk.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

ISO 8573-1 Chart by Compressed Air Best Practice.

Compressed Air Quality and ISO 8573-1 Purity Classes

Airborne particles surround us everywhere.   In a general work environment, nearly four million particles per cubic foot is floating around us at any given time.  When a compressor compresses this air, the concentration increases substantially.  So, compressed air is not only expensive to make, but very dirty.  As the air exits your air compressor and travels into your pneumatic system, there is so much contamination that the International Standard Organization, ISO, created an Air Quality chart with Purity Classes.

ISO8573-1-2010

This chart is easy to follow and can be found in the ISO8573-1 standard for Air Quality.  It is used to select a cleanliness level for your compressed air system.  The contamination is categorized into three areas; Particles, Water, and Oil (reference above).  A Class is associated with a number for each category ranging from 0 (most stringent) to 9 (most relaxed).  As an example, an Air Quality value of ISO8573-1:2010 [1.2.4] has a Class 1 for Particles, Class 2 for Water, and Class 4 for Oil.  These Class values will show the maximum value in each category.

To define the categories in more detail, I will separate the three to discuss the origins and solutions.

  • Particles: For solid particles, this part comes from many different areas.  The surrounding ambient air that is being drawn into the air compressor is filtered; but the intake filter will only remove large diameter particles.  The smaller diameter particles will go through the filter and into the compressed air system.  Another part is rust particles that occur from steel air pipes and receiver tanks.  Over time, rust will flake off and create particles that can affect pneumatic equipment.  Other particles can come from components inside the air compressor, valves, etc., that wear and breakdown.  In the ISO column for Particles, it is separated into three different micron ranges and concentrations.  The removal of particles from the compressed air is done by traps and compressed air filters.  EXAIR offers two types; Filter Separators with 5-micron filtration and Oil Removal Filters with 0.03-micron filtration.  There are other types of filtration systems depending on your ISO requirement.
  • Water:  Humidity is a natural occurrence as water vapor in the surrounding air.  It can be measured as a dew point temperature.  This is the temperature at which water will condense and make rain.  Inside an air compressor, the air is ‘squeezed”, and the amount of space for water vapor is reduced.  So, it will condense into liquid form as “rain” inside the pipes.  Air that comes out from an air compressor will always be saturated with water.  To remove liquid water, a mechanical device can be used.  Inside a Filter Separator, a centrifugal separator will spin the air and remove the liquid water.  To remove water vapor, a compressed air dryer is required like a refrigerant, desiccant, deliquescent, or membrane type.  Each type will have a dew point range that they can reach.  As an example, a refrigerant type will reduce the dew point near 37 oF (3 oC).  That means that water will not condense until the temperature reaches below 37 oF (3 oC).
  • Oil: This category can be found as a liquid, aerosol or vapor, and it includes more than just oil. It contains small hydrocarbons, CO, CO2, SO2, and NOX.  Oil mainly comes from inside an oil-flooded air compressor.  As the air passes through the compressor, it will pick up remnants of oil aerosols and carry it downstream.  With high temperatures inside the air compressor, some of the oil will vaporize.  Even with oil-less type air compressors, carbon vapor can still be an issue.  Small hydrocarbons can come through the air intake and condense inside the system like water vapor above.  To remove the liquid and aerosol type of oil, Oil Removal Filters can be used.  They are designed to “coalesce” the small particles into larger particles for gravity to remove.  Oil vapor requires an activated carbon to remove.  These types of filter units will adsorb the vapor.  This helps to remove odors as well as dangerous chemical vapors that may be in the compressed air line.

There are a variety of pneumatic systems that use the ISO8573-1 standard.  This will include breathing air operations, food and beverage, pharmaceutical, and the electronic industries.  If you need stringent requirement for your compressed air system, the Air Quality standard should be used by referring to the Class numbers above.  This helps to dictate the types of filtration and air dryers that should be used within your pneumatic system.  If you have any questions about your compressed air system, an Application Engineer at EXAIR can help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

ISO 8573-1 Chart by Compressed Air Best Practice.

Compressed Air Quality

In a recent conversation with an end user, we scratched the surface on compressed air quality.  In this case, the customer wanted to maintain their Super Air Knives as well as possible through preventative maintenance, and through supplying sufficient quality compressed air.  At present, they were unsure of the required compressed air quality for our products, and called EXAIR to seek direction.

When it comes to compressed air quality, ISO 8573 provides detailed standards on air quality classes for various levels of contaminants.  At times you may see a three digit code describing a filter, and this code refers to particulate, moisture, and lubricant classes of the filter (specified in that order).  The classes used to define these codes can be found below.

Compressed Air Quality ClassesISO 8573-1 Compressed Air Quality Classes

For example, if the application in question requires process air for assembly in a clean room with low particulate, low moisture, and low oil content, a filter rating of 1-1-1 would be desired.  EXAIR Automatic Drain Filter Separators are suitable to filter particulate to 5 micron, and our Oil Removal Filters are capable of trapping sub-micron particles down to 0.03 micron.  Supplying compressed air to these specifications is suitable for all EXAIR products.

Providing clean, dry compressed air is important to prevent contaminants from damaging components or manufactured products in an application.  Contaminants can enter the system at the intake of the compressor, through the compressor itself, or through the compressed air piping in the form of rust or pipe scale.

Determining the quality of air needed for an application can be done by considering the end use of the compressed air.  If the application requires plant air, there is no need to produce or maintain process air within the facility.  Compressed air quality can be tailored to the specific application at the point of use.

If you need help selecting the proper filters and compressed air conditioning equipment, contact and EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE