Compressed Air Quality and ISO 8573-1 Purity Classes

Airborne particles surround us everywhere.   In a general work environment, nearly four million particles per cubic foot is floating around us at any given time.  When a compressor compresses this air, the concentration increases substantially.  So, compressed air is not only expensive to make, but very dirty.  As the air exits your air compressor and travels into your pneumatic system, there is so much contamination that the International Standard Organization, ISO, created an Air Quality chart with Purity Classes.

ISO8573-1-2010

This chart is easy to follow and can be found in the ISO8573-1 standard for Air Quality.  It is used to select a cleanliness level for your compressed air system.  The contamination is categorized into three areas; Particles, Water, and Oil (reference above).  A Class is associated with a number for each category ranging from 0 (most stringent) to 9 (most relaxed).  As an example, an Air Quality value of ISO8573-1:2010 [1.2.4] has a Class 1 for Particles, Class 2 for Water, and Class 4 for Oil.  These Class values will show the maximum value in each category.

To define the categories in more detail, I will separate the three to discuss the origins and solutions.

  • Particles: For solid particles, this part comes from many different areas.  The surrounding ambient air that is being drawn into the air compressor is filtered; but the intake filter will only remove large diameter particles.  The smaller diameter particles will go through the filter and into the compressed air system.  Another part is rust particles that occur from steel air pipes and receiver tanks.  Over time, rust will flake off and create particles that can affect pneumatic equipment.  Other particles can come from components inside the air compressor, valves, etc., that wear and breakdown.  In the ISO column for Particles, it is separated into three different micron ranges and concentrations.  The removal of particles from the compressed air is done by traps and compressed air filters.  EXAIR offers two types; Filter Separators with 5-micron filtration and Oil Removal Filters with 0.03-micron filtration.  There are other types of filtration systems depending on your ISO requirement.
  • Water:  Humidity is a natural occurrence as water vapor in the surrounding air.  It can be measured as a dew point temperature.  This is the temperature at which water will condense and make rain.  Inside an air compressor, the air is ‘squeezed”, and the amount of space for water vapor is reduced.  So, it will condense into liquid form as “rain” inside the pipes.  Air that comes out from an air compressor will always be saturated with water.  To remove liquid water, a mechanical device can be used.  Inside a Filter Separator, a centrifugal separator will spin the air and remove the liquid water.  To remove water vapor, a compressed air dryer is required like a refrigerant, desiccant, deliquescent, or membrane type.  Each type will have a dew point range that they can reach.  As an example, a refrigerant type will reduce the dew point near 37 oF (3 oC).  That means that water will not condense until the temperature reaches below 37 oF (3 oC).
  • Oil: This category can be found as a liquid, aerosol or vapor, and it includes more than just oil. It contains small hydrocarbons, CO, CO2, SO2, and NOX.  Oil mainly comes from inside an oil-flooded air compressor.  As the air passes through the compressor, it will pick up remnants of oil aerosols and carry it downstream.  With high temperatures inside the air compressor, some of the oil will vaporize.  Even with oil-less type air compressors, carbon vapor can still be an issue.  Small hydrocarbons can come through the air intake and condense inside the system like water vapor above.  To remove the liquid and aerosol type of oil, Oil Removal Filters can be used.  They are designed to “coalesce” the small particles into larger particles for gravity to remove.  Oil vapor requires an activated carbon to remove.  These types of filter units will adsorb the vapor.  This helps to remove odors as well as dangerous chemical vapors that may be in the compressed air line.

There are a variety of pneumatic systems that use the ISO8573-1 standard.  This will include breathing air operations, food and beverage, pharmaceutical, and the electronic industries.  If you need stringent requirement for your compressed air system, the Air Quality standard should be used by referring to the Class numbers above.  This helps to dictate the types of filtration and air dryers that should be used within your pneumatic system.  If you have any questions about your compressed air system, an Application Engineer at EXAIR can help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

ISO 8573-1 Chart by Compressed Air Best Practice.

Compressed Air Quality

In a recent conversation with an end user, we scratched the surface on compressed air quality.  In this case, the customer wanted to maintain their Super Air Knives as well as possible through preventative maintenance, and through supplying sufficient quality compressed air.  At present, they were unsure of the required compressed air quality for our products, and called EXAIR to seek direction.

When it comes to compressed air quality, ISO 8573 provides detailed standards on air quality classes for various levels of contaminants.  At times you may see a three digit code describing a filter, and this code refers to particulate, moisture, and lubricant classes of the filter (specified in that order).  The classes used to define these codes can be found below.

Compressed Air Quality ClassesISO 8573-1 Compressed Air Quality Classes

For example, if the application in question requires process air for assembly in a clean room with low particulate, low moisture, and low oil content, a filter rating of 1-1-1 would be desired.  EXAIR Automatic Drain Filter Separators are suitable to filter particulate to 5 micron, and our Oil Removal Filters are capable of trapping sub-micron particles down to 0.03 micron.  Supplying compressed air to these specifications is suitable for all EXAIR products.

Providing clean, dry compressed air is important to prevent contaminants from damaging components or manufactured products in an application.  Contaminants can enter the system at the intake of the compressor, through the compressor itself, or through the compressed air piping in the form of rust or pipe scale.

Determining the quality of air needed for an application can be done by considering the end use of the compressed air.  If the application requires plant air, there is no need to produce or maintain process air within the facility.  Compressed air quality can be tailored to the specific application at the point of use.

If you need help selecting the proper filters and compressed air conditioning equipment, contact and EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE