How Do I Estimate The Cost Of My Compressed Air?

Saving Money and Compressed Air

One of the best features of EXAIR products is the engineering behind the designs.  For example, our nozzles are designed to generate a maximum force possible per CFM of compressed air.  This means that the compressed air consumed by the device is at its maximum possible efficiency, which in turn reduces the compressed air demand in an application, reducing the cost of the solution.

But, how do you determine the cost of a compressed air driven product?

Step 1 – Quantify flow

The first step to determine compressed air cost is to quantify the flow rate of the product.  Most pneumatic equipment will have a spec sheet which you can reference to determine air consumption, but open pipe blowoffs and drilled holes won’t provide this type of information.  In those cases, or in any case where the compressed air flow is unknown or questionable, a compressed air flow meter can be used.  (We have Digital Flowmeters for use on compressed air piping, with or without data logging capability, and with serial or wireless communication.)

Step 2 – Calculate flow over time

Once the flow rate is known, it’s time to determine flow rates per day/week/month/year.  To do so, we will perform a bit of short and easy math.  What we will do, is use the known flow rate of the device, and multiply this by the total time in operation to determine daily, weekly, monthly, and annual usage rates.  For example:

A 1/8” open pipe blowoff will consume 70 SCFM.  In an 8 hour shift there are 480 minutes, resulting in a total consumption of 33,600 SCFM per 8 hour shift.

Step 3 – Determine cost

With a quantified flow rate, we can now determine the cost.  Many facilities will know the cost of their compressed air per CFM, but for those which don’t, a cost of ($0.25/1000 standard cubic feet) can be used.  This value is then multiplied by the total compressed air consumption from above, to give a quantified dollar amount to the compressed air driven device.

Using the flow rate from above:

If (1) shift is run per day, 5 days per week and 52 weeks per year, this open pipe blowoff will have an annual cost of $2,184.00.

Step 4 – Compare

At this point we know the real cost of the device.  The benefit to quantifying these flow rates, is when making a comparison to an alternative such as an engineered solution.  For example, if we were to replace the open pipe blowoff reference above with an EXAIR 1010SS 1/8” NPT nozzle, the compressed air demand would drop to 13 SCFM, yielding the following flow rates and costs:

If (1) shift is run per day, 5 days per week and 52 weeks per year, this open pipe blowoff will have an annual cost of $405.60.

Comparing these two solutions on an annual basis yields a difference of $1,778.40.  This means an air savings which correlates to $1,778.40 per year – just by replacing ONE open pipe blowoff with an engineered solution.  Replacing multiple open pipe blowoffs will yield repeat savings.

The 1010SS EXAIR Micro Air Nozzle

Determining the cost of a compressed air driven device can clarify the impact of a truly engineered solution.  If you have an interest in determining the cost of the compressed air devices in your facility, contact an EXAIR Application Engineer.  We’ll be happy to help.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Controlling Temperature And Flow Of An EXAIR Vortex Tube

If you need a reliable, consistent flow of cold air, look no further than the EXAIR Vortex Tube:

A 1/4 ton of refrigeration in the palm of your hand!

Getting the performance you want comes down to answering two simple questions:

What temperature do I need? 

Vortex Tubes produce a DROP in temperature, so your compressed air supply temperature is our starting point to determine what the actual cold air temperature will be.  The magnitude of the temperature drop is dependent on two factors:

  • Compressed air supply pressure – the higher the pressure, the higher the temperature drop.
  • Cold Fraction setting of the Vortex Tube – this is the percentage of the air supply that’s directed to the cold end.  The same temperature drop is produced, regardless of model, for a given Cold Fraction.  The lower the Cold Fraction, the greater the temperature drop (and hence, the lower the air temperature.)

EXAIR has two distinct series, or types, of Vortex Tubes:

3200 Series are used when Cold Fractions above 50% are desirable.  This provides maximum refrigeration…high flows and temperature drops that are optimal for many spot cooling applications such as tool cooling, setting hot melt adhesives, quick cooling of soldering/brazing, etc.

3400 Series are used for lower Cold Fractions (below 50%) and generate VERY cold air flow…as low as -50°F.  Some common applications for these are cryogenic lab sample cooling, circuit testing, or freeze seals in certain piping systems.

Temperature drops are dependent only on supply pressure and Cold Fraction setting. These values apply to any Vortex Tube, regardless of size/model.

Cold Fraction is adjusted by turning the Hot Air Exhaust Valve to let more, or less, hot air out, as shown in this short video:

What flow do I need?

Both the 3200 and 3400 Series Vortex Tubes are offered, from stock, in twelve distinct models of each series.  These are defined by the compressed air consumption, and the cold air flow is determined by the Cold Fraction setting.

Small Vortex Tubes come in three Models for each series, and consume 2, 4, or 8 SCFM when supplied with compressed air @100 psig.

Medium Vortex Tubes come in five Models for each series, and consume 10, 15, 25, 30, or 40 SCFM @100 psig.

Large Vortex Tubes come in four Models for each series, and consume 50, 75, 100, or 150 SCFM @100 psig.

Converting a Vortex Tube to a different Model (in the same size class) is as easy as changing the Generator (and the Taper Sleeve, for the Small Vortex Tubes):

The Generator and Taper Sleeve (*Small VT’s only) are changed by removing the Cold Cap.

So, for example, if you have a Model 3210 (10 SCFM consumption, 1,000 Btu/hr rated cooling) set to an 80% Cold Fraction, supplied with compressed air @100 psig & 70°F, it’s making a 16°F cold air flow of 8 SCFM.  If your situation calls for more flow, you can change the Generator…for example, if you convert it to a Model 3240 (40 SCFM, 2,800 Btu/hr rated cooling) – leaving the Cold Fraction at 80%, you’ll now get 32 SCFM of 16°F air.

What if you need colder air?  You can convert this same Medium Vortex Tube to a Model 3440 (40 SCFM consumption, max cold temperature) by changing the Generator again…and if you lower the Cold Fraction to 20%, it’ll make a -53°F cold flow of 8 SCFM.

Powerful and versatile, EXAIR Vortex Tubes are suitable for a wide range of applications requiring a consistent and reliable flow of cold air.  For help in selecting the right one for your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tube Kits Make Heat Removal A (Cool) Breeze

I recently had the pleasure of discussing a cooling application with a customer.  The caller was familiar with our Cabinet Cooler Systems, and wanted to incorporate the same technology into a spot cooling application.  Problem was, he wasn’t sure about exactly how much cold air flow, and at what temperature, would suit his needs best…this was on a brand new mold (for plastic parts) that had just arrived.  His idea was to order a few different Vortex Tubes, and experiment with them.

I agreed that trying a few different Vortex Tube models would be a quick and easy way to find a solution, but I had a quicker and easier way: the Model 3930 Medium Vortex Tube Cooling Kit.  This gave him all the Generators that fit the Medium Vortex Tube, allowing him to make any medium Vortex Tube model he desired.  He would also be able to adjust the Cold Fraction to get the most effective temperature drop as well.

EXAIR Vortex Tube Cooling Kits come with all parts necessary to effect a wide range of cold air flow & temperatures.

With the Vortex Tube in place, it was very easy to configure the optimal cooling…as he decreased the Cold Fraction (to get colder air) he replaced the Generator (to get higher air flow.)  His application (cooling molded plastic parts) was satisfied with a Model 3225, set to a 70% Cold Fraction…this gave him 17.5 SCFM of cold air flow, at temperature of around 0F (a 71F drop from their compressed air supply temperature, which is around 70F.)

Is an EXAIR Cooling Kit right for your heat removal application?  If you’d like to find out,  give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

PEEK Super Air Nozzles Resist Corrosion; Won’t Scratch Sensitive Surfaces

Because they might be needed in some pretty aggressive environments, EXAIR offers many of our Intelligent Compressed Air Products in a variety of materials. One particular material of construction, however, has two distinct benefits. PEEK (Polyether Ether Ketone, for those of us who ruined the grading curve in CHEM102) plastic offers not only superior chemical corrosion resistance; it’s also non-marring. Since EXAIR introduced the first PEEK Super Air Nozzle in 2005, they’ve been specified all over the world; sometimes for their corrosion resistance; other times so they won’t mar or scratch sensitive surfaces…and every once in a while, for both.

I recently had the pleasure of discussing blow off applications with the production manager of a large anodizing & plating company. The chemicals used in these processes are extremely corrosive, and the equipment used in those areas has to be made of something that’ll handle it. PEEK plastic is just such a material. Also, once they’ve treated their customers’ parts, they need to handle them with care…they’re getting paid a premium to provide nice, shiny parts with a perfect finish. When they’re blowing them off, they need to use something that won’t scratch up the surface if the operator makes incidental contact with the blow off tip. Again, PEEK plastic is just such a material.  Since their existing blow offs were fitted to 1/8 NPT connections, they chose the Model 1102-PEEK Mini Super Air Nozzle.

EXAIR’s PEEK Super Air Nozzles can be mounted in place or on a Safety Air Gun, depending on your needs.

Corrosion resistant and non-marring…EXAIR offers our PEEK Super Air Nozzles in six sizes, from the Atto (M4x0.5 threads; 2.5 SCFM; 2 oz force applied) to our High Force Model 1104-PEEK (3/8 NPT threads; 35 SCFM; 1.9 lbs force applied) for an incredibly diverse range of applications.

If you’d like to discuss what material(s) of construction your application(s) require, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Cabinet Cooler Systems Save The Day, Every Day

Summertime temperatures get hot. Protect your electronics with an EXAIR Cabinet Cooler System.

As you may have seen in our most recent E-NEWS Special Bulletin, or experienced in real life (depending on where you’re located,) most of the eastern United States is seeing a pretty significant heat wave for early summer…or, as we call it at EXAIR, “Cabinet Cooler Season.”  And this year is kicking it off with a bang, for sure.

On Tuesday, when the E-NEWS email went out, I was on the phone, processing an order for a Model 4340 NEMA 12, 2,800 Btu/hr, Thermostat Controlled Cabinet Cooler System, to ship overnight to a user who wanted to protect the new drive they were replacing because theirs overheated.  They were up and running before noon on Wednesday.

On Wednesday, four local customers placed “will call” orders for Cabinet Cooler Systems.  I had the pleasure of talking with one of them, who was installing one for the very first time.  As he was looking over the Installation & Operation Guide before he left our building, he just wanted to make sure that hooking it up was as simple as it sounded…and it is.  We pulled the parts from the box and went over exactly how each step is performed, and he left feeling confident that he’d have it installed pretty quickly.  Just in case, I also got his email address and sent him a link to our NEMA 4 Cabinet Cooler System Installation Video Blog:

I don’t know what the rest of the summer holds in store, but I know this: if you have concerns about protecting sensitive, critical, and/or expensive electrical & electronic enclosures, EXAIR Cabinet Cooler Systems are the solution you’re looking for.  Easy to install.  Maintenance free operation.  Durable, UL Listed, and CE Compliant.  If you’d like to discuss your application and get one for yourself, call me; let’s talk.

***Order an EXAIR Cabinet Cooler System before July 31, 2017, and get a FREE AC Sensor!***

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Won’t Keep You Waiting For Anything

Have you ever sent an email, or left a voice mail message for someone without knowing they were out of the office? It can be pretty frustrating to not hear back from someone, especially if your needs are urgent.

At EXAIR, we make sure this doesn’t happen:

*For starters, we don’t have an automated attendant…if you call EXAIR during normal business hours, you’re going to talk to a real live human being.

*What’s more, that real live human being is going to be one of our Customer Service Representatives, and they can answer any questions you might have about price and availability of any of our Engineered Compressed Air Products.

*If you need detailed technical information, they’ll transfer you to an Application Engineer…and they are always keenly aware of who’s available & who’s not.  You won’t get anyone’s voice mail unless you specifically ask for it, and if one of us is on vacation (and won’t be able to return your call for a number of days,) you’ll know that before you’re transferred to leave that message.

*Not only that, but we’ve got a system in place to monitor each other’s emails.  Which brings me to the success story that inspired this blog:

It’s vacation season, and another of us took off for some well deserved R&R with the family.  According to The System, I get to check those incoming emails while this co-worker is out.  And he (like the rest of us) gets a LOT of emails.  Some are new requests for application/performance data, and some are continuing conversations of the details of (sometimes) complex applications.  Like the project he was working on with a customer who wanted to use Air Knives to blow off a continuous strip of material exiting a wash/rinse vessel.  After a discussion of the details of the application, they had decided to try (2) Model 110003 3″ Aluminum Super Air Knives, one mounted on either side, to “strip the strip.”  And it worked perfectly.  They just wanted to run the details of this first installation by us before doing the other seven.  Part of my process was to go back through the chain of emails…while this looked pretty straight forward, the devil is indeed in the details, and I hate that guy.  But, try as I might (sorry; I’m an engineer,) I could not find fault, or room to improve, with the setup they designed…it was most pleasantly devil-free.

Compact, efficient and quiet, the EXAIR 3″ Super Air Knife is an ideal blow off solution for a variety of applications.

Anyway, with my agreement that their installation was indeed optimal (it’s exactly what I would have done too, for the record,) they placed an order for the (14) Super Air Knives to outfit the other (7) wash/rinse operations.

If we were keeping score, it would be coworker-2, Russ-14.  But we’re not.  Lest my record suffer when I “break for the Lake” in June.  By then, it’ll be Cabinet Cooler Season, and I almost hate to miss a week of that.  Almost.

Man, I don’t even take long pants with me to the Lake.

If you have questions about compressed air products or applications, we’ve got answers.  Live and in real time, every day.  Call us; let’s talk.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Reversible Drum Vac Empties Sumps For Demolition Company

A demolition company was looking for a way to remove the liquid from sumps and tanks in the industrial buildings they were contracted to provide their service upon. The liquids in question were mainly coolant and oil that had been left behind when the machinery was removed…anything that could be re-used was already gone; this was the “bitter dregs,” as it were.  Since these buildings are about to be demolished, electricity is rarely available.

They had a pumping system that ran off a diesel engine that they COULD take with them, but they ALWAYS had a large mobile air compressor for the pneumatic tools used in other processes in the demolition of the building. Since they had steel drums in abundance, the Reversible Drum Vac Systems sounded very attractive to them, so they got a Model 6295 Deluxe High Lift Reversible Drum Vac System for 55 Gallon Drum to try out.

The High Lift Reversible Drum Vac System converts a drum and dolly into a mobile pumping system.

Now, instead of committing an additional truck (and driver) to getting the diesel engine driven pumping system to the site, they simply move the Reversible Drum Vac pump unit from 55 gallon drum to 55 gallon drum as they’re filled. Once the drums are returned to their facility, they switch the the Reversible Drum Vac to the “empty drum” configuration, and use it to pump the liquid out into their recycling tanks, where they await collection and processing by their waste handling service.  Even when they have to use a number of drums, the High Lift Reversible Drum Vac Systems still streamline the process over the use of the diesel engine pumping system.

If you’d like to find out more about our Industrial Vacuums, or any of our compressed air operated products, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

%d bloggers like this: