Importance of Thermostat Setting for Cabinet Cooling

An EXAIR Cabinet Cooler System with either the Thermostat Control or the Electronic Temperature Control (ETC) option includes a temperature measuring device that is used to control the operation of the Cabinet Cooler System to maintain the set-point temperature.Thermostat and ETC

For most industrial enclosure cooling applications, a temperature of 95°F (35°C) is sufficient to be below the rated maximum operating temperature of the electrical components inside the cabinet. EXAIR Thermostats are preset to 95°F (35°C) and are adjustable. Maintaining the cabinet at 95°F (35°C) will keep the electronics cool and provide long life and reduced failures due to excessive heat. But if 95°F (35°C) is good, why not cool the cabinet to 70°F (21.1°C)?

When cooling an enclosure to a lower temperature, two things come into play that need to be considered. First, the amount of external heat load (the heat load caused by the environment) is increased. Using the table below, we can see the effect of cooling a cabinet to the lower temperature. For a 48″ x 36″ x 18″ cabinet, the surface area is 45 ft² (4.18 m²). If the ambient temperature is 105°F (40.55°C), we can find from the table the factors of 3.3 BTU/hr/ft² and 13.8 BTU/hr/ft² for the Temperature Differentials of 10°F (5.55°C) and 35°F (19.45°C). The factor is multiplied by the cabinet surface area to get the external heat load. The heat load values calculate to be 148.5 BTU/hr and 621 BTU/hr, a difference of 472.5 BTU/hr (119.1 kcal/hr)

External Heat Load

The extra external heat load of 472.5 BTU/hr (119.1 kcal/hr) will require the Cabinet Cooler System to run more often and for a longer duration to effectively remove the additional heat. This will increase, unnecessarily, the operating costs of the cooling operation.

The other factor that must be considered when cooling an enclosure to a lower temperature is that the Cabinet Cooler cooling capacity rating is effected. I won’t go into the detail in this blog, but note that a 1,000 BTU/hr Cabinet Cooler (rated for 95°F (35°C cooling) working to cool a cabinet down to 70°F (21.1°C) instead of 95°, has a reduced cooling capacity of 695 BTU/hr (174 kcal/hr).  The reduction is due to the cold air being able to absorb less heat as the air rises in temperature to 70°F instead of 95°F.

In summary – operating a Cabinet Cooler System at 95°F (35°C) provides a level cooling that will keep sensitive electronics cool and trouble-free, while using the least amount of compressed air possible.  Cooling to below this level will result in higher operation costs.

If you have questions about Cabinet Cooler Systems or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR’s Cabinet Coolers Solve Your Overheating Problems

We here at EXAIR always know when summer is approaching, as phone calls and orders for the Cabinet Cooler Systems start to kick into high gear.  After those first few hot days in late spring, it is common for panels and electrical enclosures to overheat due to faulty air conditioning units, fans that are not working, or lack of a cooling system in general.

Time for us to sharpen our pencils and be ready to help! Our Cabinet Coolers are in stock and ready to solve your overheating problems with same day shipping on orders we receive by 3pm. If you need assistance choosing your Cabinet Cooler Solution, Contact an Application Engineer today!

The Cabinet Cooler System is a low cost, reliable way to cool and purge electronic control panels.  We recently hosted a Webinar on the systems, and it is available for review (click picture below)  webinar-on-demand

EXAIR Cabinet Coolers incorporate the vortex tube technology to produce cold air from compressed air, all with no moving parts.

Below shows the basics of how the Cabinet Cooler is able to provide cooling to an enclosure.  Compressed air enters the vortex tube based system, and (2) streams of air are created, one hot and one cold. The hot air is muffled and exhausted through the vortex tube exhaust.  The cold air is discharged into the cabinet through the Cold Air Distribution Kit and routed throughout the enclosure. The cold air absorbs heat from the cabinet, and the hotter air rises to the top of the cabinet where it exits to atmosphere under a slight pressure. Only the cool, clean, dry air enters the cabinet – no dirty, hot humid outside air is ever allowed into the cabinet!

HowCCWorks
How the EXAIR Cabinet Cooler System Works

EXAIR offers Cabinet Cooler Systems for cabinets and enclosures to maintain a NEMA rating of NEMA 12 (dust tight, oil-tight), NEMA 4 (dust tight, oil-tight, splash resistant, indoor/outdoor service) and NEMA 4X (same as NEMA 4, but constructed of stainless steel for food service and corrosive environments.

Cabinet Cooler Systems can be configured to run in a Continuous Operation or with Thermostat control. Thermostat control is the most efficient way to operate a Cabinet Cooler.  They save air by activating the cooler only when the internal temperature reaches the preset level, and are the best option when fluctuating heat loads are caused by environmental or seasonal changes. The thermostat is preset at 95°F (35°C) and is easily adjusted.

Another option is the ETC Electronic Temperature Control, a digital temperature control unit for precise setting and monitoring of enclosure conditions. An LED readout displays the internal temperature, and the use of quick response thermocouple provides real time, accurate measurements. The controller has easy to use buttons to raise or lower the desired cabinet temperature set-point.

48xx-ETC120
EXAIR NEMA 4X 316SS Cabinet Cooler System with Electronic Temperature Control installed on control panel in a pharmaceutical plant.

 

Other Special Cabinet Cooler considerations are:

  • High Temperature –  for ambient temperatures of 125°F to 200 °F – for use near furnaces, ovens, etc.
  • Non-Hazardous Purge – ideal for dirty areas where contaminants might normally pass through small holes or conduits. A small amount of air (1 SCFM) is passed through the cooler when the solenoid is in the closed position, providing a slight positive pressure within the cabinet.
  • Type 316 Stainless Steel – suitable for food service, pharmaceutical, and harsh and corrosive environments.

If you have any questions about Cabinet Coolers or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Expand Flexibility of Cabinet Coolers with Side Mount Kits

Last week I wrote about the Thermostat Options for Smart Cooling utilizing the EXAIR Cabinet Cooler Systems.  You can see read that blog post here.  Today we will touch base on the Side Mount Kits as an option to expand the flexibility for the installation and operation.

Sometimes there isn’t room above an electrical panel to fit the Cabinet Cooler, even though it takes just 5″ to 7.25″ of space above. In these cases, the Side Mount Kit is available to handle any of the Cabinet Cooler sizes and NEMA ratings. EXAIR offers (6) models of Side Mount Kits –

  • Model 4909 – For NEMA 12 Cabinet Coolers up to 550 BTU.hr (139 Kcal/hr), Aluminum construction
  • Model 4910 – For NEMA 12 Cabinet Coolers , 650 BTU//hr (165 Kcal/hr) and higher, Aluminum construction
  • Model 4906 – For NEMA 4 and 4X Cabinet Coolers up to 550 BTU/hr (139 Kcal/hr), Type 303 Stainless Steel
  • Model 4907 – For NEMA 4 and 4X Cabinet Coolers, 650 BTU/hr (165 Kcal/hr) and higher, Type 303 Stainless Steel
  • Model 4906-316 – For NEMA 4 and 4X Cabinet Coolers up to 550 BTU/hr (139 Kcal/hr), Type 316 Stainless Steel
  • Model 4907-316 – For NEMA 4 and 4X Cabinet Coolers, 650 BTU/hr (165 Kcal/hr) and higher, Type 316 Stainless Steel

side_mounts_new

The NEMA 4 and 4X Cabinet Coolers must be mounted vertically for the unit to properly resist the ingress of liquids and maintain the integrity of the cabinet NEMA rating.

The Side Mount Kits install into a standard electrical knockout (1-1/2 NPS) for easy installation.

If you have any questions about the Side Mount Kits, Cabinet Coolers and/or Thermostat Options or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Cabinet Cooler System for Electrical Enclosure Cooling

If you watched the Webinar we hosted recently (if not, Watch It here) then you know that the EXAIR Cabinet Cooler System is an intelligent solution for electrical enclosure cooling.  The use of a Thermostat Control system is a key component to a system that provides the needed cooling while keeping compressed air usage to a minimum. There are several choices available, and I will cover those for you today.

The thermostat control systems are the most effective way to operate a Cabinet Cooler. They work by activating the the cooler only when the internal temperature of the enclosure reaches a preset, critical level. Thermostat controlled cooler systems are the best option when a cabinet will experience fluctuating heat loads, caused by operational, environmental, and seasonal changes.

Cabinet Cooler Systems that are ordered from the factory with thermostat control include a solenoid valve and thermostat.  The solenoid valve is available in 110-120VAC, 50/60 Hz, 240VAC, 50/60 Hz, and 24VDC and is UL Listed and CE and RoHS compliant. The thermostat is rated for 24V-240V AC or DC, 50/60 Hz and is UL Recognized and CSA Certified.

Solenoids
Solenoid Valves – 24 VDC, 110 VAC, and 240 VAC Available

 

The thermostat is factory set at 95°F (35°C). It will typically hold an internal cabinet temperature to +/- 2°F (1°C). The thermostat can be adjusted up or down if a different internal temperature is desired by turning the slotted temperature adjusting sleeve, with a 1/16 turn being approximately a 5°F change.

9017_thermoPRINT
Thermostat

 

The solenoid and thermostat components are rated to match and maintain the Cabinet Cooler System and cabinet NEMA rating, and can be NEMA 12, NEMA 4 or NEMA 4X. A Thermostat Control can be added to an existing Continuous Operation Cabinet Cooler System, please consult the factory for help in selecting the right kit.

4825SS
NEMA Type 4X Cabinet Cooler System, which includes the Solenoid Valve and Thermostat

If you have any questions about the Cabinet Coolers and Thermostat Options or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

High Temperature Vortex Tube for Sensor Cooling

Last year I worked with a power company that was having issues with Position Feedback Sensors overheating causing erroneous readings and early failures.  The sensors were located above a steam turbine, and the ambient temperatures reached 128°F with spikes to 140-150°F.  The customer had called in looking for a way to keep the sensors cool, using minimal compressed air, and in a robust package.  After reviewing the details, we recommended the High Temperature Vortex Tube, model HT3210.  While using just 10 SCFM of 100 PSIG compressed air, the HT3210 provides 8 SCFM of cold air at a temperature drop of 54°F from the supply air temperature.  Bathing the sensor with this cool air keeps prevents it from heating up and has eliminated the bad readings and prevented the early failures.

The customer recently implemented the same fix for another set of sensors.

Plant Photo
Power Generation Process, with (3) Position Feedback Sensors
Sensor
Position Feedback Sensor

The High Temperature Vortex Tube is a special Vortex Tube offering from EXAIR that utilizes a brass generator and hi-temp seal for use in ambient temperatures up to 200°F.  Simply supply clean, dry compressed air, and get cold air starting at 50-54°F lower than the supply air temperature.  With sizes ranging from 2 to 150 SCFM, there is a Vortex Tube that will meet most applications.

Vortex tube
High Temperature Vortex Tube

If you have questions about the Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Cabinet Cooler Systems Simple, Quick, and Easy

In this corner EXAIR Cabinet Cooler
In this corner:  EXAIR Cabinet Cooler

 

When compared to air-to-air heat exchangers and refrigerant based air conditioners, Cabinet Cooler systems win hands down.

Companies generally do not have issues with their control panels until the heat of summer. As the ambient conditions get warmer, the temperatures inside electrical panels also rise.  Sensitive electronics start to malfunction and shut down.  A telecommunication company was having the same issues.  They operated an ultra-broadband access service.  When the temperature alarms triggered, the system would shut down and reset.  This on and off cycling concerned the engineers in damaging and reducing the life of the electronics inside the telecommunications control box.

They contacted EXAIR as a possible supplier to retrofit their cabinets in critical areas. They started the conversation with a list of some stringent requirements.  They indicated that they were looking at other options like a refrigerant panel and an air-to-air heat exchanger.  The challenge was on…

Conditions:

Power Consumption: 350 Watts

Maximum Ambient Temp: 150 Deg. F (65 Deg. C)

Cabinet Location: Very limited space

Requirements:

  1. Retrofitting capability and ease of installation to existing cabinets
    1. EXAIR Cabinet Cooler: Excellent. 22mm knockout hole, about 30 minutes to install and weighs 0.5Lbs (0.2Kg).
    2. Refrigerant Type: Poor. Large panel cut outs, roughly 4 hours of installation, and weighs about 30Lbs (13.6Kg)
    3. Heat Exchanger: Poor. Large panel cut outs, roughly 2 hours of installation, and weighs 16Lbs. (7.3Kg)
  2. Fit into tight spaces
    1. EXAIR Cabinet Cooler: Excellent. For this application, it is 5.2” (131mm) high and 1.17” (30mm) diameter.
    2. Refrigerant Type: Poor. 22” (560mm) X 12” (305mm) X 8.5” (216mm). But also need additional room for air flow.
    3. Heat Exchanger: Good. Roughly 11” (279mm) X 16.5” (419mm) X 3.5” (89mm). But also need additional room for air flow.
  3. Able to handle high ambient condition
    1. EXAIR Cabinet Cooler: Excellent. We have a HT version for conditions up to 200 Deg. F (93 Deg. C).
    2. Refrigerant Type: Poor. Limited to about 125 Deg. F (52 Deg. C) maximum.
    3. Heat Exchanger: Good. Limited to 160 Deg. F (71 Deg. C) maximum
  4. Keep internal temperature at or below 95 Deg. F (35 Deg. C)
    1. EXAIR Cabinet Cooler: Excellent. With the high ambient temperature, it has very little effect on the cooling capacity.
    2. Refrigerant Type: Poor. The refrigerant will not work with the high ambient unless a water-cooled condenser is used. Added cost.
    3. Heat Exchanger: Poor. This unit will not be able to keep the temperature below ambient temperatures.
  5. Low maintenance (or maintenance free)
    1. EXAIR Cabinet Cooler: Excellent. No moving parts!!! With filtered compressed air, just put it into the panel and let it run. No PM required.
    2. Refrigerant Type: Poor. Minimum quarterly cleaning of condenser, changing the condenser filter, do electrical checks on compressor and fans, and refrigerant leak checks.
    3. Heat Exchanger: Good. Electrical checks on fans.
  6. Long life span
    1. EXAIR Cabinet Cooler: Excellent. 5 year warranty with units lasting over 10 years.
    2. Refrigerant Type: Poor. With high ambient conditions, the compressors and fans can short cycle causing premature failure.
    3. Heat Exchanger: Good. The fans can quit allowing electronics to heat up.
  7. Low cost (!!!) (This had 3 exclamation marks)
    1. EXAIR Cabinet Cooler: Excellent. Base unit less than $300.00
    2. Refrigerant Type: Poor. Base unit is near $1,500.00
    3. Heat Exchanger: Good. Base unit is near $1,000.00

Overall, in this scenario, there is no comparison. The EXAIR Cabinet Cooler can be mounted in minutes and start supplying cool air to the electrical components.  With no maintenance required and no moving parts, you can get many years of service.  Simple, quick, and easy made EXAIR Cabinet Cooler the correct choice.  All Cabinet Cooler systems are available with a UL Listed NEMA 12, NEMA 4, or NEMA 4X rating. They are CE compliant and available in 316SS for highly corrosive applications. If you have electrical heating issues like the telecommunication company, you can contact one of our Application Engineers for help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Everyone is Talking about the HEAT

While sports fans are consumed with Lebron James joining the Heat, the attention of those of us in manufacturing are focused on heat related problems affecting equipment.

I was contacted by a customer who was having problems with his ink jet printing. Throughout the day, as temperatures climb, the viscosity of the ink changes  requiring frequent adjustments. Then on the night shift the settings have to be reversed. The problem with this method is the need for adjustments are not known until defective product prints are observed. This then requires the operator to make adjustments and take defective product produced prior and during adjustments out of the line.

Using a model 4308 cabinet cooler to maintain a consistent temperature around the ink pot eliminated any need for adjustments due to ambient temperature changes. This saved on labor, eliminated defects, and increase productive up time.

Joe Panfalone
Application Engineer
joepanfalone@exair.com