EXAIR Cabinet Cooler Systems – How Do they Work?

Cabinet Cooler systems eliminate heat related problems by providing a temperature controlled environment inside of electrical enclosures. Typically set to maintain 95F (but also adjustable) a Cabinet Cooler system can withstand harsh, remote environments with little maintenance. They cool heat loads up to 5600 Btu/Hr and are UL listed to maintain your cabinet’s NEMA integrity. 

Compressed air enters the vortex tube powered Cabinet Cooler and is converted into two streams, one hot and one cold. Hot air from the vortex tube is muffled and exhausted through the vortex tube exhaust. The cold air is discharged into the cabinet through the included cold air distribution kit. The displaced hot air in the cabinet rises and exhausts to atmosphere through the cabinet cooler body. The control cabinet is both cooled and purged with cool, clean air. Outside air is never able to enter the control panel.

sl17_Nema4
How it works! 

EXAIR’s compressed air operated, Cabinet Cooler Systems are a low cost, reliable way to cool and purge electronic control panels. There are no moving parts to wear out and no filters to replace, eliminating the need for constant monitoring.

NEMA Type 12 (IP54) and NEMA 4 and 4X (IP66) models are available that are very compact and mount in just minutes through an ordinary electrical knockout.

Cabinet Cooler Family
EXAIR Cabinet Cooler Sizes 

Available in a wide range of cooling capacities, ranging from 275 Btu/hr. for our smallest system, up to 5,600 Btu/hr. for our largest Dual System.

Thermostat control systems are the most efficient way to operate a Cabinet Cooler as they limit compressed air use by operating only when the temperature inside the enclosure approaches critical levels. Continuous Operating Systems are recommend when constant cooling and constant positive pressure inside the panel is required.

Thermostat controlled Cabinet Cooler Systems are the best option when experiencing fluctuating heat loads caused by environment or seasonal changes. Thermostatically Controlled Systems include a Cabinet Cooler, adjustable thermostat, solenoid valve, cold air distribution kit consisting of tubing and self adhesive clips to duct the cold air inside the panel and a filter separator to remove any water or contaminants from the supply.

Thermostat and ETC

If you would like to discuss our cabinet cooler systems or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS

Applications for Vortex Tube Spot Cooling

The EXAIR Mini Cooler family is one of the many vortex tube based Spot Cooler products that EXAIR offers.  This is the smallest of the group coming in at 550 BTU/hr of cooling capacity.  The Mini Cooler Systems  are available in two options.

minicoolerWFAM_500
EXAIR’s Mini Cooler is available with a single point hose kit or a dual point hose kit.

  • The Single Point Outlet option will give you ten inches of flexible cold outlet to easily position the cold air stream near the target point.
  • The Dual Point Outlet option gives ten inches of 1/4″ flexible outlet that then splits to two separate four inch lengths of 1/4″ flexible cold outlet hoses.
  • Both include point or flat fan tips for the cold air outlets
  • Both include a manual drain filter separator
  • both include the swivel magnetic base with 100 lb. pull magnet.

minicooler_appli400
The Single Point Mini Cooler with a Flat Fan Tip installed on a milling application where liquid coolant cannot be used due to material constraints.

The single point hose kit is ideal for small diameter milling or drilling applications where the cold air can cover the contact area of the cutter.  It can also be used on soldering, industrial sewing, ultrasonic welding, or even small punching applications to list just a few.

EXAIR’s Mini Cooler System w/ Dual Point Hose Kit keeping UHMW cool while being machined

The dual point hose kit is ideal for two separate small diameter cutters, one larger diameter cutter, rotary style knives where there material is being slit, or larger diameter multi-point ultrasonic welders/punches.

When using the Mini Cooler the adjustable cold outlet stays in place and can easily bend around fixtures, spindles, welding horns, or dye aligning pins.  The swivel magnetic base gives additional adjustment at the base of the cooler to aid in the versatility of this product.   To further the adjustability of the cooler the operating pressure can easily be adjusted to lower or raise the cooling capacity of the Mini Cooler to meet the demands of the precise application.

If you believe you have an application that would benefit from the use of a Mini Cooler, or you are unsure which product would be ideal for your application please contact an Application Engineer.  we are all here, willing to help however possible to get your application improved in both safety and efficiency.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

 

Cabinet Cooling with Thermostat Control and ETC

An EXAIR Cabinet Cooler® System with either the Thermostat Control or the Electronic Temperature Control (ETC) option includes a temperature measuring device that is used to control the operation of the Cabinet Cooler System to maintain the set-point temperature.Thermostat and ETC

For most industrial enclosure cooling applications, a temperature of 95°F (35°C) is sufficient to be below the rated maximum operating temperature of the electrical components inside the cabinet. EXAIR Thermostats are preset to 95°F (35°C) and are adjustable. Maintaining the cabinet at 95°F (35°C) will keep the electronics cool and provide long life and reduced failures due to excessive heat. But if 95°F (35°C) is good, why not cool the cabinet to 70°F (21.1°C)?

When cooling an enclosure to a lower temperature, two things come into play that need to be considered. First, the amount of external heat load (the heat load caused by the environment) is increased. Using the table below, we can see the effect of cooling a cabinet to the lower temperature. For a 48″ x 36″ x 18″ cabinet, the surface area is 45 ft² (4.18 m²). If the ambient temperature is 105°F (40.55°C), we can find from the table the factors of 3.3 BTU/hr/ft² and 13.8 BTU/hr/ft² for the Temperature Differentials of 10°F (5.55°C) and 35°F (19.45°C). The factor is multiplied by the cabinet surface area to get the external heat load. The heat load values calculate to be 148.5 BTU/hr and 621 BTU/hr, a difference of 472.5 BTU/hr (119.1 kcal/hr)

External Heat Load

The extra external heat load of 472.5 BTU/hr (119.1 kcal/hr) will require the Cabinet Cooler System to run more often and for a longer duration to effectively remove the additional heat. This will increase, unnecessarily, the operating costs of the cooling operation.

The other factor that must be considered when cooling an enclosure to a lower temperature is that the Cabinet Cooler cooling capacity rating is effected. I won’t go into the detail in this blog, but note that a 1,000 BTU/hr Cabinet Cooler (rated for 95°F (35°C cooling) working to cool a cabinet down to 70°F (21.1°C) instead of 95°, has a reduced cooling capacity of 695 BTU/hr (174 kcal/hr).  The reduction is due to the cold air being able to absorb less heat as the air rises in temperature to 70°F instead of 95°F.

In summary – operating a Cabinet Cooler System at 95°F (35°C) provides a level cooling that will keep sensitive electronics cool and trouble-free, while using the least amount of compressed air possible.  Cooling to below this level will result in higher operation costs.

If you have questions about Cabinet Cooler Systems or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Special Cabinet Cooler Options – High Temperature, Non-Hazardous Purge and Type 316 Stainless Steel

Recent blog discussions about the EXAIR Cabinet Cooler Systems have covered many topics including correctly sizing one, the NEMA ratings, and how-they-work.  In this blog I will review three special options that are available for the most extreme environmental conditions- high temperatures, dirty environments, and harsh or corrosive areas.

High Temperature – For enclosures that reside in high temperature ambient conditions such as near furnaces, boilers, or ovens, EXAIR offers a High Temp version, with special internal components designed to withstand the elevated temperatures.  Cabinets near sources of high heat certainly need to be kept cool, and the EXAIR High Temperature Cabinet Cooler is specially suited to for use in these locations.

ht2ccPR_559pxwide
High Temperature Dual Cabinet Cooler System

Non-Hazardous Purge (NHP) – Cabinet Cooler Systems with this feature provide a continuous positive purge within the enclosure to prevent contaminants from entering through small holes or conduits.  Especially suited for dirty and dusty environments, the NHP Cabinet Cooler Systems provide a slight positive pressure inside the enclosure. This is done by passing 1 SCFM (28 SLPM) of air through the cooler when the the solenoid is in the closed position. When the thermostat reaches the set-point temperature and energizes the solenoid, the full line pressure of air is delivered to the Cabinet Cooler providing the full cooling capability, and still keeping the positive pressure.  When the internal temperature cools to the set-point, the solenoid closes and the system returns to the 1 SCFM (28 SLPM) of air flow condition.

nhpcc_300x
Non-Hazardous Purge Cabinet Cooler for Dirty, Dusty Environments

Type 316 Stainless Steel NEMA 4X Cabinet Coolers – For enclosures that are in food service, pharmaceutical, harsh, and/or corrosive environments, and any application where 316 stainless steel is preferred, the Cabinet Coolers are available in the Type 316 stainless material. The systems are UL Listed for wash down environments, ensuring the enclosure electrical contents remain cool and dry under any condition. Noted applications include on ocean going ships, power plants, medical device manufacturing facilities, and bakeries.

316SSCC_sq800
Type 316 Stainless Steel NEMA 4X Cabinet Cooler System

Please note that the High Temperature, Non-Hazardous Purge and Type 316 Stainless Steel Cabinet Coolers are each available from stock!  No waiting for these special models.

To discuss your application and how a Cabinet Cooler System or any EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB