The Strength of the 1” High Power Flat Super Air Nozzles

1″ Flat Super Air Nozzles

A casting company used a die casting process to make large aluminum panels. In their operation, a two-part die would clamp together and be filled with hot liquid aluminum. Once the panel was formed and cooled, the die would open to release the part. Before the next panel was die casted, they would use a home-made cart to cool and clean the dies. The cooling was done first by spraying water onto the surface, then compressed air was used to dry the dies. When they started to use their home-made cart in their process, they noticed that the air pressure would begin to drop in their facility. Other locations in the plant started having problems with their pneumatic equipment.   They were using too much compressed air during the drying period; so, they contacted EXAIR to see if we could help reduce the amount of compressed air to dry the dies.

To explain a little more about the home-made cart, it was made from a 1” square piece of tubing that was bent in a U-shape. The dimension of the cart was about 40” long and 24” high. Across the top was a piece of extruded aluminum spanning the two ends of the U-shape tubing. This portion of the cart would supply the water to the liquid nozzles. The liquid nozzles hung vertically down from the extruded aluminum at designated heights to target certain areas of the dies. The U-shaped square tubing was used to supply the compressed air to the blow-off nozzles. The compressed air inlets were welded onto each end of the 1” square tubing. Across the bottom of the cart, the 1” square tubing had 38 holes that were drilled and tapped to 1/8” NPT (19 tapped holes on each side). The blow-off nozzles were 1/8” pipes with the ends smashed (reference picture below). They were made to different lengths to get as close to the die for maximum blowing force. The entire home-made assembly was attached to a robotic fixture with a cam to move the large cart between the dies. In applications using “smashed” pipes, they are very easy and inexpensive to make. But, as this customer found out, they use way too much compressed air and they are not as effective in blowing-off or drying.

Part of cart with 1/8″ flattened pipe

The customer above was limited to modifications to the home-made cart. It was already configured with the robot features and cam to hit the targeted areas. So, I recommended the model HP1126, 1” High Power Flat Super Air Nozzle. It has a 1” wide air stream that is very similar to the flow pattern of the 1/8” smashed pipe. But unlike the smashed pipe design, the model HP1126 nozzle can accomplish so much more. One of the biggest differences is that the EXAIR nozzles use much less compressed air. (The initial reason for contacting EXAIR). With the engineered design of the nozzle, it can entrain large amounts of ambient air which means that less compressed air is required. For a 1/8” NPT smashed pipe, it can use close to 70 SCFM of air at 80 PSIG – each!

The model HP1126 only requires 17.5 SCFM at 80 PSIG. That is a difference of 52.5 SCFM per nozzle. With 38 nozzles being used on this home-made cart, that equates to a total savings of 1,995 SCFM of compressed air. By simply replacing the 1/8” smashed pipe to a model HP1126 with a shorter nipple, their facility was able to save much compressed air and maintain the pneumatic requirements in the other work areas.

The customer was extremely happy with the air savings, but they asked about the amount of force that the model HP1126 can supply. It was important in their process to remove any residual water from the dies. The reason for the blow-off pipes to be so close to the die was to try and increase the blowing force. The best way that I could explain to them was by using an example of a garden hose. (Reference a blog by Neal Raker “Sometimes Back Pressure is Good; Sometimes it is Bad“).  The garden hose is attached to a spigot outside your house. As you open the spigot to supply water through the hose, the water will flow out of the hose at a slow velocity; not very strong. When you place your thumb partially over the end of a garden hose, you restrict the flow and increase the force. Now, you can reach the second-floor windows of your house to clean. With a lack of restriction at the end of the pipes, the air pressure will drop quickly as it travels through the long square tube and through the 1/8” pipe extensions. By the time the compressed air reaches the blow-off site, the pressure is much lower; thus, reducing the effectiveness of removing the water.

The EXAIR nozzles work like your thumb on the hose. The usable pressure is increased at the HP1126 nozzle, instead of a point much further upstream. By increasing the pressure at the point-of-use, the effective velocity and force is much stronger. In addition to this, they can now move the nozzles away from the die surface; in case of any “hiccups” in moving the cart in and out of the dies and eliminating any marring of the surfaces.

Once they installed the 38 pieces of the model HP1126 nozzles onto their cart, the first thing that they noticed was the amount of noise reduction. The model HP1126 only has a noise level of 82 dBA at 80 PSIG, compared to a noise level of an open pipe which is over 100 dBA. By replacing the flattened nozzles with the EXAIR nozzles, this company was able to…
1. reduce air consumption
2. keep the other areas of the plant operating by conserving compressed air at this location
3. reduce the noise level and
4. increase the effective blowing force

If you find that by using your blow-off/drying system, your pneumatic machines under-perform, or the low-pressure alarms are triggered, or you have to turn on an auxiliary compressor, you should contact an Application Engineer at EXAIR to see if we can optimize your compressed air devices. These EXAIR engineered nozzles can remove many issues in your system as it did with the casting company above.

 John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Cabinet Cooler Keeps Large Panel Cool Near Steam Exhaust

20151120_133449_resized
Stainless cabinet near steam vent

The photo above shows a stainless steel Cabinet at left which has been installed near to a steam exhaust (within 1 meter) in a beverage manufacturing plant.

20151120_133019_resized
150 mm diameter fan, lower right side

 

Inside the panel is a 150 mm diameter fan which is pulling in an air and steam mixture which is causing the temperature inside the cabinet to climb to unacceptable levels. The result is that the motor drives located inside the panel are failing, causing a tremendous cost for replacement and downtime.

Our local distributor worked with the customer to acquire the necessary data for us to calculate heat load within the panel. We determined the customer needed our model HT4880SS-240 Cabinet Cooler System to keep their internal panel temperature at a more reasonable level, year round, even in their worst case scenario with constant steam exhaust in the area.

One key component to success in this application will be removal of the fan and covering of the vent that it once occupied in order to keep the steam from being drawn into the inside of the panel. Historically, fans have been the go to strategy for keeping panels like this cool. However, in this situation, as in many others, the fans pull in un-wanted contamination. There isn’t any filter that can keep steam from getting inside and causing all sorts of problems with condensate forming on internal components, thus promoting corrosion and heat related failures.

The Cabinet Cooler System will provide a filtered, and dry source of cooling airflow which will produce a slight positive purge pressure on the panel to keep such harmful outside atmospheres from entering into the panel. This assures, long life for the panel components and much less hassle and problems associated with heat related failures.

Neal Raker, International Sales Manager
nealraker@exair.com
EXAIR_NR

EXAIR Cabinet Cooler Systems Control Humidity While Maintaining Internal Temperature

As the weather in the Northern Hemisphere changes over from winter to spring and temperatures start to climb, it is slowly becoming necessary for customers to utilize the Cabinet Cooler Systems to keep control panels cool.

One such situation involved a customer who was building a panel for his client in Malaysia. Malaysia is about 3 degrees north of the Equator, so it is what I would call a semi-tropical if not tropical environment. And such places are quite high in humidity levels. This customer had a client who was in the palm oil processing industry which is quite big in Malaysia. He needed a Cabinet Cooler System to generate about 1000 Btu/hr. of cooling power in a NEMA 12 type system. So I recommended he go with a 1700 Btu/hr. Cabinet Cooler System so he had plenty of capacity. I also recommended he go with 24 VDC thermostat control so he could easily pull the power out from within his panel and not have to run any new circuits.

As the customer duly noted, the fact that the Cabinet Cooler System purges the cabinet with clean, cool and dry compressed air allows for the humidity levels to hang down at a much lower level around 40 – 50% RH instead of up around 80 – 90%. This is attributed to the processing and drying of the compressed air at the production point before it is sent out to the facility and again at the point of use with the included, 5 micron, compressed air filter/separator that comes with each system.

Previously, the customer was using only the small, DC type fans to pull that hot, humid air through the panel which led to many corrosion issues and did not relieve the heat issue at all. With this new improvement, the end user no longer has to worry about such issues. Also, there is virtually no maintenance for this system which produces much longer up-times for the customer as there are no moving parts to wear out. Overall, it was a good recommendation in this case as the Cabinet Cooler System was handling multiple, previously negative issues. Now the pain has been taken away and the end user can move on to solving other, more pressing problems.

Neal Raker, Application Engineer
nealraker@exair.com

Snow Snow Go Away

Enough already! Enough is enough! I am done with Winter!

 

I’m sure that I am expressing the sentiments of  most the nation.   In my sixty some years I cannot remember a winter this severe. I shouldn’t complain though as I have heat and electricity, unlike those who are caught up in the propane shortage.

When you come to think of it, folks in the extreme northern climates deal with this kind of weather as a normal routine. It just proves that we have become so accustomed to a controlled environment, that we have lost our resilience and the ability to cope  outside our comfort zone. I am going to take this as a wake up call and stop complaining and go take the dog for a walk.

With cold gripping the country, you would not think that we would be getting calls for our Cabinet Cooler Systems. Quite the contrary as many control panels are in very warm environments such as foundries, bakeries, etc. Also Summer will be coming soon. It would be best to get a Cabinet Cooler System sized up and ready rather than wait for a heat related shutdown.

CCSizing

Our application engineers are available to help you size up your cooling requirements. We have an online form to outline  the data we will need to size one up properly. One of our engineers will do the calculations for you and get back to you promptly. Remember last summer when that one panel kept tripping out or alarming every time it got too hot…You may be cold now, but don’t let the heat sneak up on you.

Joe Panfalone
Application Engineer
Phone (513) 671-3322
Fax (513) 671-3363
Web: www.exair.com
Twitter: EXAIR_JP