OSHA 29 CFR 1910.95 (a) – It’s a Noise Exposure Standard, Not Just a Confusing Number

Strings of numbers and characters can often appear daunting.  For instance, if I wrote in binary code it would be a string of ones and zeros.  (01000101 01101110 01100111 01101001 01101110 01100101 01100101 01110010 01101001 01101110 01100111 00100000 01101001 01110011 00100000 01000001 01010111 01000101 01010011 01001111 01001101 01000101.) That can look like gibberish and cause concern if unknown or it can make sense to programmers and people familiar with binary code.

Other alphanumeric strings may cause some concern for industry professionals.  Take, for instance, OSHA standards. The OSHA standard 29 CFR 1910.95 (a) may be unfamiliar to some, and thus concerning. Many Environmental Health and Safety Engineers will recognize this code.  It is an OSHA standard that revolves around the amount of time an employee is permitted to be exposed to specific sound levels. These sound levels are all based on the weighted sound level of the noise the operators are exposed to. To better understand how the octave and frequency of the sound play into this, there is a chart provided below.

Equivalent A-Weighted Sound Level Chart – (1)

The weighted sound level is the level at which a Digital Sound Level Meter will read the current level of noise within an environment. This scale is then used to move further into the OSHA directive that we focus on helping companies meet to best provide safe environments for their employees to work in.

If you notice, the lowest weighted sound level is 90 dBA, this is also the lowest-rated noise level that OSHA speaks of in 1910.95(b)(2). It has been shown that noise levels over this level for extended periods will result in permanent hearing loss. The standard then goes on to discuss the duration an employee can be exposed to noise levels even with the use of personal protective equipment as well as even impulsive or impact noise.  The table of permissible time limits is shown below.

Permissible Noise Exposures (2)

As you can see from the table above provided by OSHA, any noise level that an operator is exposed to for eight hours cannot exceed 90 dBA. Noises within an industrial environment can also be variable throughout the day. For instance, the operator stands outside of a sheet metal press and the concussive strike on the press gives off a 90 dBA strike for every stroke of the press. This would not be a continuous noise level. Maybe the operator is operating a CNC machine that is cutting a nest of parts and uses a handheld blowgun to remove debris and coolant from the parts before taking them from their fixture. This blowgun is not used continuously and therefore would not be rated as such for the exposure time. A time study would be conducted on the average length of time the operator is utilizing this gun along with the level of noise it produces during use. OSHA then gives a calculation to use to appropriately combine the sound level while the gun is being used and when it is not in use. That equation is written out below.

Mixed Environment Exposure Fraction
C1/T1+C2/T2+… = ____
Total Exposure Fraction
Cn/Tn = ____

C1 = Duration of time for a specified noise level
T1 = Total time of exposure permitted at that level
Cn = Total time of exposure at a specified noise level
Tn = Total exposure time permitted at that level

Should the summation of the fractions for different exposures be greater than the Total Exposure fraction, the summation value should be used. As mentioned above, a time study on exposure to noise levels will be needed to obtain the information needed for this type of study. Once the study is done the process can proceed to the next level within the OSHA standard which is a hearing conservation program.

I would like to interject a small side-step at this point. Rather than rolling straight into the implementation of PPE which is proven to be the lowest reliable factor of protection by the CDC and NIOSH. If any of these noise levels being generated are due to the use of compressed air points of use, EXAIR can potentially lower the noise of these point of use applications. In the events, open blowoffs or “band-aid” fixes are in place to keep processes running, and Engineered Solutions can easily be implemented that will reduce the noise level produced by this operation. Whether it is on the handheld Safety Air Gun in the hands of a CNC operator, or if it is a part/scrap ejector that is blowing the sheet metal press out after every strike, we have products that have proven time over time using an Engineered Solution will save air, reduce noise levels, and still get the job done.

If you would like to discuss OSHA directives revolving around compressed air, share with us a recent citation you received from an inspector for this standard, or just discuss compressed air usage in general, contact us.

Brian Farno
Application Engineer


1 – Equivalent A-Weighted Sound Level Chart – Retrieved from OSHA.Gov – https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=9735&p_table=standards

2 – Permissible Noise Exposures – Retrieved from OSHA.Gov – https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=9735&p_table=standards


Super Air Knife’s Adjustability and Flexibility = Success

The EXAIR Super Air Knife is the most efficient compressed air knife on the market. We know this because we’ve tested them, and our competitors’ offerings, for performance, using the same instruments, controls, and procedures. We’re not going to publish data that we can’t back up, and that’s a fact.

EXAIR Super Air Knife removing moisture after a rinse on anodized parts.

They’re also ideally suited to a wide variety of applications – they come in lengths from 3 inches to 9 feet long (and can actually be coupled together for uninterrupted air flows of even longer lengths,) a variety of materials for just about any environment. But the best thing about our Super Air Knives is how you can adjust the air pressure and flow to complete a wide variety of tasks. You can adjust them in two different ways, Replacing or adding Shims, or regulating the incoming air pressure.

Shims for the aluminum, 303 Stainless Steel, and 316 Stainless Steel Super Air Knives

Changing out your shim!

A larger shim gap will give you higher flow and force from your Air Knife. Honestly, the 0.002″ shim that comes pre-installed in all of our Air Knives is perfectly suitable for most blow off applications, and appropriate air supply conditions are the first thing you should check for before going with thicker shims, but if you do indeed need a boost, a thicker shim will indeed give you one…here’s a blog with the video to show you how it’s done:

Video Blog: How to Change a Shim in a Super Air Knife
Filter Regulator
Regulator and filter

Another advantage to having a Pressure Regulator at every point of use is the flexibility of making pressure adjustments to quickly change to varying production requirements.  Not every application will require a strong blast sometimes a gentle breeze will accomplish the task.  As an example one user of the EXAIR Super Air Knife employs it as an air curtain to prevent product contamination (strong blast) and another to dry different size parts (gentle breeze) coming down their conveyor. For Performance at different supply pressures see the chart below.

Super Air Knife Performance Table

EXAIR products are highly engineered and are so efficient that they can be operated at lower pressures and still provide exceptional performance!  This save’s you money considering compressed air on the average cost’s .25 cents per 1000 SCFM.

If you’d like to discuss altering the performance of your Super Air Knife, give us a call.

Jordan Shouse
Application Engineer
Find us on the Web http://www.exair.com/28/home.htm
Follow me on Twitter
Like us on Facebook