OSHA 29 CFR 1910.95 (a) – It’s a Noise Exposure Standard, Not Just a Confusing Number

Strings of numbers and characters can often appear daunting.  For instance, if I wrote in binary code it would be a string of ones and zeros.  (01000101 01101110 01100111 01101001 01101110 01100101 01100101 01110010 01101001 01101110 01100111 00100000 01101001 01110011 00100000 01000001 01010111 01000101 01010011 01001111 01001101 01000101.) That can look like gibberish and cause concern if unknown or it can make sense to programmers and people familiar with binary code.

Other alphanumeric strings may cause some concern for industry professionals.  Take, for instance, OSHA standards. The OSHA standard 29 CFR 1910.95 (a) may be unfamiliar to some, and thus concerning. Many Environmental Health and Safety Engineers will recognize this code.  It is an OSHA standard that revolves around the amount of time an employee is permitted to be exposed to specific sound levels. These sound levels are all based on the weighted sound level of the noise the operators are exposed to. To better understand how the octave and frequency of the sound play into this, there is a chart provided below.

Equivalent A-Weighted Sound Level Chart – (1)

The weighted sound level is the level at which a Digital Sound Level Meter will read the current level of noise within an environment. This scale is then used to move further into the OSHA directive that we focus on helping companies meet to best provide safe environments for their employees to work in.

If you notice, the lowest weighted sound level is 90 dBA, this is also the lowest-rated noise level that OSHA speaks of in 1910.95(b)(2). It has been shown that noise levels over this level for extended periods will result in permanent hearing loss. The standard then goes on to discuss the duration an employee can be exposed to noise levels even with the use of personal protective equipment as well as even impulsive or impact noise.  The table of permissible time limits is shown below.

Permissible Noise Exposures (2)

As you can see from the table above provided by OSHA, any noise level that an operator is exposed to for eight hours cannot exceed 90 dBA. Noises within an industrial environment can also be variable throughout the day. For instance, the operator stands outside of a sheet metal press and the concussive strike on the press gives off a 90 dBA strike for every stroke of the press. This would not be a continuous noise level. Maybe the operator is operating a CNC machine that is cutting a nest of parts and uses a handheld blowgun to remove debris and coolant from the parts before taking them from their fixture. This blowgun is not used continuously and therefore would not be rated as such for the exposure time. A time study would be conducted on the average length of time the operator is utilizing this gun along with the level of noise it produces during use. OSHA then gives a calculation to use to appropriately combine the sound level while the gun is being used and when it is not in use. That equation is written out below.

Mixed Environment Exposure Fraction
C1/T1+C2/T2+… = ____
Total Exposure Fraction
Cn/Tn = ____

Where:
C1 = Duration of time for a specified noise level
T1 = Total time of exposure permitted at that level
Cn = Total time of exposure at a specified noise level
Tn = Total exposure time permitted at that level

Should the summation of the fractions for different exposures be greater than the Total Exposure fraction, the summation value should be used. As mentioned above, a time study on exposure to noise levels will be needed to obtain the information needed for this type of study. Once the study is done the process can proceed to the next level within the OSHA standard which is a hearing conservation program.

I would like to interject a small side-step at this point. Rather than rolling straight into the implementation of PPE which is proven to be the lowest reliable factor of protection by the CDC and NIOSH. If any of these noise levels being generated are due to the use of compressed air points of use, EXAIR can potentially lower the noise of these point of use applications. In the events, open blowoffs or “band-aid” fixes are in place to keep processes running, and Engineered Solutions can easily be implemented that will reduce the noise level produced by this operation. Whether it is on the handheld Safety Air Gun in the hands of a CNC operator, or if it is a part/scrap ejector that is blowing the sheet metal press out after every strike, we have products that have proven time over time using an Engineered Solution will save air, reduce noise levels, and still get the job done.

If you would like to discuss OSHA directives revolving around compressed air, share with us a recent citation you received from an inspector for this standard, or just discuss compressed air usage in general, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

1 – Equivalent A-Weighted Sound Level Chart – Retrieved from OSHA.Gov – https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=9735&p_table=standards

2 – Permissible Noise Exposures – Retrieved from OSHA.Gov – https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=9735&p_table=standards

 

OSHA 29 CFR 1910.95 – Standard on Occupational Noise Exposure

Last week, the EXAIR Blog featured an article about the OSHA Standard 1910.242(b) – Reduction of Air Pressure below 30 psi for Cleaning Purposes.  This week, we will review another OSHA standard that affects many of you in manufacturing and other industries.

OSHA 29 CFR 1910.95 – Standard on Occupational Noise Exposure discusses the effects of noise and sets limits for exposure.  Occupational noise can cause hearing loss, and also interfere with concentration and communication, disrupting the job performance. Below is a summary from the standard of the Permissible Noise Exposure (OSHA Table G-16)

OSHA Noise Level

From the chart, the time an employee can be exposed to loud noise is greatly reduced as the sound level goes up.   The use of hearing protection is helpful but relies on the operator to use consistently and correctly.  Ear plugs or ear muffs can be uncomfortable and hot, leading to possible reduced usage.  OSHA can come on site, and if violations to the sound level exposure limits are found, they can impose fines and mandate corrective action be taken place.

The recommended course of action when an operator is subjected to sound exceeding those in the chart above is to enable feasible administrative or engineering controls. Engineering controls is the arena in which EXAIR can be a great resource.

The first step in understanding and addressing any sound level issues is to measure the sound. The easy to use Digital Sound Meter, model 9104 shown below, allows for accurate testing of noise levels throughout the facility.  Noisy areas can be quickly identified, leading to review, design and implementation of the engineering controls.

SoundMeter_new_nist225

Some of the worst offenders for noise violations is compressed air usage.  A prime example would be inefficient blowoffs, used for cooling, drying, or cleaning.  Open pipe, copper tube or drilled pipe are a few of the common culprits.  Not only do they consume excessive amounts of compressed air, they can produce noise levels above 100 dBA.

EXAIR manufactures a wide variety of engineered products that utilize compressed air and deliver it in a controlled manner.  This allows for the most efficient use of compressed air and keeps the sound levels much lower than the inefficient methods.  A Super Air Knife can replace a drilled pipe, reducing sound by as much as 20 dBA, while using 50-70% less compressed air.  An engineered Super Air Nozzle can replace an open pipe or copper tube and reduce sound levels down to 74 dBA, and even down to 58 dBA for the smallest available nozzles.

EXAIR has been providing Intelligent Compressed Air Products since 1983.

If you have questions regarding noise limits and how to solve any issue with an EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

FREE TESTING!!!! EXAIR’s Award Winning Efficiency Lab Saves Air and Money

EXAIR’s Efficiency Lab is now the “award-winning Efficiency Lab”. Thank you to Environmental Protection Magazine for recognizing the value and importance of this EXAIR service.

epawinner2016_400x

 

I have blogged about this many times and we continue to help customers by using our free Efficiency Lab service that EXAIR provides to customers throughout the USA.  The EXAIR Efficiency Lab allows customers to send in their existing blow off device and we will test it for compressed air consumption, sound level, and force.  Ideally we try to take these measurements at the same operating pressure that is being supplied in the field so that we can compare it to an EXAIR product and offer the customer the best solution, the safest solution, and an engineered solution capable of saving them money through air savings and effectiveness.

Here is a recent example of  a product sent in by a customer concerned with compressed air consumption and safety of their people. The  hose they sent in was actually designed to be used with liquid coolants and was a very large consumer of compressed air.

A flexible blow off with .495" openings. Designed for liquid but used for compressed air. Enormous waste of air and a huge safety risk.
A flexible blow off with .495″ openings. Designed for liquid but used for compressed air. Enormous waste of air and a huge safety risk.

The hose shown above was being used at 40 psig inlet pressure.  The device is not OSHA compliant for dead end pressure, nor does it meet or exceed the OSHA standard for allowable noise level exposure.   The hose was utilizing 84.64 SCFM of compressed air and was giving off 100.1 dBA of sound.

OSHA Noise Level

As seen in the chart above, an employee is only permitted to work in the surrounding area for 2 hours a day when exposed to this noise level.   The amount of force that the nozzle gave off was far more than what was needed to blow chips and fines off the part.   The EXAIR solution was a model 1002-9230 – Safety air Nozzle w/ 30″ Stay Set Hose.

The EXAIR products were operated at line pressure of 80 psig which means they utilized 17 SCFM of compressed air and gave off a sound level of 80 dBA.  On top of saving over 67 SCFM per nozzle and reducing the noise level to below OSHA standard, the EXAIR engineered solution also meets or exceeds the OSHA standard for 30 psig dead end pressure.   In total this customer has replaced 8 of these inefficient lines and is saving 541 SCFM of compressed air each time they activate the part blowoff.

If you would like to find out more about the EXAIR Efficiency Lab, contact an Application Engineer.

We look forward to testing your blow off and being able to recommend a safe, efficient, engineered solution.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF