6 STEPS To Optimizing Compressed Air: Step 5 – Install Secondary Receiver Tanks

Since air compressors require electricity to make compressed air, it is important to optimize your compressed air system. EXAIR has six simple steps, and following these steps will help you cut electrical costs, reduce overhead, and improve your bottom line.  In this blog, I will cover the fifth step –intermediate storage of compressed air near the point-of-use. 

I had a customer that was looking at a model 1122108, 108” (2,743mm) Super Ion Air Knife Kit.  The application was removing static and debris from insulated panels which they used for large refrigerated trailers.  They were worried about how much compressed air that it would use; and they were considering a blower-type system.  I went through the negative aspects like noise, cost, maintenance, and ineffectiveness with turbulent air flows.  But, when you are limited in the amount of compressed air, I had to look at another way.  Since the process was intermittent, I used the fifth step to optimize their system to use a much better solution for their application.  The cycle rate was 2 minutes on and 10 minutes off.  I was able to calculate the size of a secondary tank to help their compressed air system.   

Model 9500-60

I would like to expand a bit more about secondary receiver tanks.  They can be strategically placed throughout the plant to improve the “ebbs and flows” of pneumatic demands.  The primary receiver tanks help to protect the supply side when demands are high, and the secondary receiver tanks help pneumatic systems on the demand side.  They give additional capacity at the end of distribution lines.  Essentially, it is easier and more efficient for compressed air to travel out from a nearby source and into an application rather than traveling through long lengths of pipes from the distribution system.

For calculating the volume size for your secondary receiver tank, we can use Equation 1 below.  It is the same for sizing a primary receiver tank, but the scalars are slightly different.  The supply line for air drops will typically come from a header pipe and are generally smaller in diameter.  So, we have to look at the air restriction that can feed into the tank.  For example, a 1” NPT Schedule 40 Pipe at 100 PSIG can supply a maximum of 150 SCFM of air flow.  This value is used for Cap below in Equation 1.  C is the largest air demand for the machine or targeted area that will be using the tank.  If the C value is less than the Cap value, then a secondary tank is not needed.  If the Cap is below the C value, then we can calculate the tank volume that would be needed.  The other value in the equation is the minimum tank pressure.  In most cases, a regulator is used to set the air pressure for the machine or area.  If the specification is 80 PSIG, then you would use this value as P2P1 is the header pressure that will be coming into the secondary tank.  With this collection of information, you can use Equation 1 to calculate the minimum tank volume. 

Equation 1:

V = T * (C – Cap) * (Pa) / (P1-P2)

Where:

V – Volume of receiver tank (cubic meter)

T – Time interval (minutes)

C – Air demand for system (cubic meter per minute)

Cap – Supply value of inlet pipe (cubic meter per minute)

Pa – Absolute atmospheric pressure (Bar)

P1 – Header Pressure (Bar)

P2 – Regulated Pressure (Bar)

For this customer above, I am still working on this purchase.  But we went from a “we don’t have enough compressed air” to a “we can possibly use the better solution with the Super Ion Air Knife”.  If you find that you might be having issues with your equipment running optimally, you may be able to install a secondary receiver to your system.  EXAIR offers 60 Gallon tanks, model 9500-60, to add to those specific areas.  If you have any questions about using a receiver tank in your application, primary or secondary, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Compressed Air Receiver Tanks On The “Demand” Side

Most any air compressor is going to have a receiver tank…from the “pancake” types that might hold a gallon or so, to the large, multi-tank arrangements that facilitate both cooling and drying of compressed air in major industrial installations.  The primary purpose of these receiver tanks is to maintain proper operation of the compressor itself…they store a pressurized volume of air so that the compressor doesn’t have to run all the time.  Receiver Tanks, however, can also be used to eliminate fluctuations at points of use, especially in facilities where there might be a lot of real estate between the compressor and the compressed air consuming products.

Cover image courtesy of: Tennessee Valley Authority; SVG version by Tomia, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

When to use Compressed Air Receiver Tanks (and More)

I was recently working with a process Engineer at a food packaging plant on installing a Super Air Knife to blow excess water off a food product. This product was moving single file on a conveyor belt with about 6 feet between each product. The belt was moving pretty slow so we wanted to turn the air knife on only when the product was in front of the knife, which saves compressed air and energy. To do this we used the ELECTRONIC FLOW CONTROL (EFC). If the knife ran the entire time it would be wasting any air blowing during one of the 6′ long gaps. This would also put an unnecessary strain on their already taxed compressed air system. The EFC let him only supply air to the Knife when it saw a product on the belt. To read more about the EFC click here!

efcapp
EXAIR Electronic Flow Control

This application worked perfectly, but they had one other issue. Throughout the day it seemed as if they were losing compressed air pressure at the knife. What they found was during peak compressed air usage in the plant the compressor couldn’t keep up with the demand. Fear not, the Super Air Knife was only running for 7 seconds and was off for 20 seconds. This was a perfect application for EXAIR’s Receiver Tank.

Receiver Tanks are great for applications that require an intermittent demand for a volume of compressed air. This can cause fluctuations in pressure and volume throughout the compressed air system with some points being “starved” for compressed air. EXAIR’s Model 9500-60 60 Gallon Receiver Tank can be installed near the point of high demand so there is an additional supply of compressed air available for a short duration. The time between the high volume demand occurrences should be long enough so the compressor has enough time to replenish the receiver tank.

Receiver Tank
Receiver Tank

If you have a process that is intermittent, and the times for and between blow-off, drying, or cooling allows, a Receiver Tank can be used to allow you to get the most of your available compressed air system. If you need any assistance calculating the need for a receiver, please let us help.

Note – Lee Evans wrote an easy to follow blog that details the principle and calculations of Receiver Tanks, and it is worth your time to read here.

If you would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Receiver Tank Calculations

Receiver Tank

My colleague, Lee Evans, wrote a blog about calculating the size of receiver tanks within a compressor air system.  (You can read it here: Receiver Tank Principle and Calculations).  But, what if you want to use them in remote areas or in emergency cases?  During these situations, the air compressor is not putting any additional compressed air into the tank.  But, we still have potential energy stored inside the tanks similar to a capacitor that has stored voltage in an electrical system.  In this blog, I will show how you can calculate the size of receiver tanks for applications that are remote or for emergency systems.

From Lee Evans’ blog, Equation 1 can be adjusted to remove the input capacity from an air compressor.  This value is Cap below.  During air compressor shutdowns or after being filled and removed, this value becomes zero.

Receiver tank capacity formula (Equation 1)

V = T * (C – Cap) * (Pa) / (P1-P2)

V – Volume of receiver tank (cubic feet)

T – Time interval (minutes)

C – Air requirement of demand (cubic feet per minute)

Cap – Compressor capacity (cubic feet per minute)

Pa – Absolute atmospheric pressure (PSIA)

P1 – Tank pressure (PSIG)

P2 = minimum tank pressure (PSIG)

 

Making Cap = 0, the new equation for this type of receiver tank now becomes Equation 2.

Receiver tank capacity formula (Equation 2)

V = T * C * (Pa) / (P1-P2)

With Equation 2, we can calculate the required volume of a receiver tank after it has been pre-charged.  For example, EXAIR created a special Air Amplifier to remove toxic fumes from an oven.  The Air Amplifier was positioned in the exhaust stack and would only operate during power failures.  In this situation, product was being baked in an oven.  The material had toxic chemicals that had to cross-link to harden.  If the power would go out, then the product in the oven would be discarded, but the toxic fumes had to be removed.  What also doesn’t work during power outages is the air compressor.  So, they needed to have a receiver tank with enough volume to store compressed air.  From the volume of the oven, we calculated that they need the special Air Amplifier to operate for 6 minutes.  The compressed air system was operating at 110 PSIG, and the Air Amplifier required an average air flow of 10 cubic feet per minute from the range of 110 PSIG to 0 PSIG.  We are able to calculate the required receiver volume to ensure that the toxic fumes are evacuated from the oven in Equation 2.

Receiver tank capacity formula (Equation 2)

V = T * C * Pa / (P1 – P2)

V = 6 minutes * 10 cubic feet per minute * 14.7 PSIA / (110 PSIG – 0 PSIG)

V = 8 cubic feet.

Receiver tanks are more commonly sized in gallons.  In converting 8 cubic feet to gallons, we get a 60-Gallon Receiver Tank.  EXAIR recommended the model 9500-60 to be used near the oven to operate the special Air Amplifier during power outage.

Another way to look at Equation 2 is to create a timing equation.  If the volume of the tank is known, we can calculate how long a system will last.  In this example for scuba diving, we can use this information to configure the amount of time that a tank will last.  The diver has a 0.39 cubic feet tank at a pressure of 3,000 PSIG.  I will use a standard Surface Consumption Rate, SCR, at 0.8 cubic feet per minute.  If we stop the test when the tank reaches a pressure of 1,000 PSIG, we can calculate the time by using Equation 3.

Receiver tank timing formula (Equation 3):

T = V * (P1 – P2) / (C * Pa)

T – Time interval (minutes)

V – Volume of receiver tank (cubic feet)

C – Air demand (cubic feet per minute)

Pa – Absolute atmospheric pressure (PSIA)

P1 – Initial tank pressure (PSIG)

P2 – Ending tank pressure (PSIG)

By placing the values in the Equation 3, we can calculate the time to go from 3,000 PSIG to 1,000 PSIG by breathing normal at the surface.

T = 0.39 cubic feet * (3,000 PSIG – 1,000 PSIG) / (0.8 cubic feet per minute * 14.7 PSIA)

T = 66 minutes.

What happens if the diver goes into deeper water?  The atmospheric pressure, Pa, changes.  If the diver goes to 100 feet below the surface, this is roughly 3 atmospheres or (3 * 14.7) = 44.1 PSIA.  If we use the same conditions above except at 100 feet below, the time will change by a third, or in looking at Equation 3:

T = 0.39 cubic feet * (3,000 PSIG – 1,000 PSIG) / (0.8 cubic feet per minute * 44.1 PSIA)

T = 22 minutes. 

If you have any questions about using a receiver tank in your application, you can contact an EXAIR Application Engineer.  We will be happy to solve for the proper volume or time needed for your application.

 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb