Optimization:  Step 6 – Control the air pressure

Since air compressors use a lot of electricity to make compressed air, it is important that you use it as efficiently as possible.  EXAIR generated a chart with six simple steps to optimize your compressed air system.  Following these steps will help you to cut overhead costs and improve your bottom line.  In this blog, I will cover the sixth step; controlling the air pressure at the point of use.

Pressure Regulators

One of the most common pressure control devices is called the Regulator.  It is designed to reduce the downstream pressure that is supplying your system.  Regulators are commonly used in many types of applications.  You see them attached to propane tanks, gas cylinders, and of course, compressed air lines.  Properly sized, regulators can flow the required amount of gas at a regulated pressure for safety and cost savings.

EXAIR designs and manufactures compressed air products to be safe, effective, and efficient.  By replacing your “old types” of blowing devices with EXAIR products, it will save you much compressed air, which in turn saves you money.  But, why stop there?  You can optimize your compressed air system even more by assessing the air pressure at the point-of-use.  For optimization, using the least amount of air pressure to “do the job” can be very beneficial and practical.

Model 1100

Why are regulators important for compressed air systems?  Because it gives you the control to set the operating pressure.  For many blow-off applications, people tend to overuse their compressed air.  This can create excessive waste, overwork your air compressor, and steal from other pneumatic processes.  By simply turning down the air pressure, less compressed air is used.  As an example, a model 1100 Super Air Nozzle uses 14 SCFM of compressed air at 80 PSIG (5.5 bar).  If you only need 50 PSIG (3.4 bar) to satisfy the blow-off requirement, then the air flow for the model 1100 drops to 9.5 SCFM.  You are now able to add that 4.5 SCFM back into the compressed air system. And, if you have many blow-off devices, you can see how this can really add up.

In following the “EXAIR Six Steps To Optimizing Your Compressed Air System”, you can reduce your energy consumption, improve pneumatic efficiencies, and save yourself money.  I explained one of the six steps in this blog by controlling the air pressure at the point of use.  Just as a note, by reducing the pressure from 100 PSIG (7 bar) to 80 PSIG (5.5 bar), it will cut your energy usage by almost 20%.  If you would like to review the details of any of the six steps, you can contact an Application Engineer at EXAIR.  We will be happy to help. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Let Solenoid Valves and Ball Valves save you Money!

Step 4 of the Six Steps to Optimizing your compressed air is to turn off your compressed air when it is not in use. This step can be done using two simple methods either by using manual controls such as ball valves or automated controllers such as solenoid valves. Manual controls are designed for long use and when switching on and off are infrequent. Ball Valves are one of the most commonly used manual shut offs for compressed air and other fluids.

  • Manual Valves allow for operators to turn on and off their system by hand. The full-flow ball valves range from ¼” NPT to 1 1/4” NPT in size and will not restrict flow.  EXAIR also offers a manual foot pedal valve for hands-free operations.  This ¼” NPT foot valve has a 3-way operation and works great if the operator has to use both hands in their process.
  • Solenoid Valves are a way to turn on and off the supply of compressed air electrically for automated systems. We offer solenoids in three different voltages; 110Vac, 240Vac, and 24Vdc.  EXAIR has a large range of flows with ports ranging from ¼” NPT to 1” NPT.  All models are UL listed and are CE and RoHS compliant.
Top Left: Solenoid Valve , Bottom: Manual Foot Valve , Right: Manual ball valve

By turning off your compressed air, whether it be with manual or automated controllers, a company can minimize wasted compressed air and extend the longevity of the air compressor that is used to supply the plants air. The longevity of the air compressor is increased due to reduced run time since it does not need to keep up with the constant use of compressed air. Other benefits include less use of compressed air and recouped cost of compressed air. 

EXAIR’s Ball Valves sizes 1/4″ NPT to 1-1/4″ NPT

If you have any questions on how these easy to install accessories can help save you money give us a call! One of our application engineers will be happy to assist!

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Installing Secondary Receiver Tanks: Step 5 in Optimizing Your Compressed Air System

SixSteps

The 5th step in the 6 steps to optimizing your compressed air system highlights the use of intermediate storage of compressed air near the point of use. Secondary, or intermediate Receiver tanks are installed in the distribution system to provide a source of compressed air close to the point of use, rather than relying on the output of the compressor.

Compressed air receiver tanks are an integral part to many compressed air distribution systems. Compressed air is stored at a high pressure after drying and filtration, but just upstream of point of use devices. The receiver tank is charged to a pressure higher than what is needed by the system, creating a favorable pressure differential to release compressed air when needed.

Think of a compressed air receiver tank as a “battery”. It stores the compressed air energy within a system to be used in periods of peak demand, helping to maintain a stable compressed air pressure. This improves the overall performance of the compressed air system and helps to prevent pressure drop.

receiver_tank

They can be strategically placed to provide a source of compressed air to intermittent high volume compressed air applications. Rather than having to pull from the compressor, a receiver tank can be sized to provide the short-term volume of air for a particular application. In a previous post, we’ve highlighted how to calculate the necessary receiver tank based on the air consumption and duration of the application.

EXAIR offers from stock a 60-gallon receiver tank designed specifically for these higher-usage intermittent types of applications. Model 9500-60 can be installed near the point of high demand so that you have an additional supply of compressed air available for a short duration. The tank comes with mounting feet and is designed to stand up vertically, saving floor space. The tank meets American Society of Mechanical Engineers (ASME) pressure vessel code.

If you have an application in your facility that’s draining your compressed air system, a receiver tank could be the ideal solution. Give us a call and one of our Application Engineers will be happy to help evaluate your process and determine the most suitably sized receiver tank.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Six Steps to Optimizing Compressed Air: Step 4, Turn it Off When Not in Use

Step 4 of the Six Steps to Optimizing your compressed air is to turn off your compressed air when it is not in use. This step can be done using two simple methods either by using manual controls such as ball valves or automated controllers such as solenoid valves. Manual controls are designed for long use and when switching on and off are infrequent. Ball Valves are one of the most commonly used manual shut offs for compressed air and other fluids.

Automated controllers allow your air flow to be tied into a system or process and turn on or off when conditions have been met. Solenoid valves are the most commonly used automated control device as they operate by using an electric current to open and close the valve mechanism within. Solenoid valves are some of the more versatile flow control devices due to the fact that they open and close almost instantaneously. Solenoid valves can be used as manual controls as well by wiring them to a switch or using simple programming on a PLC to turn the valve on or off using a button.

EXAIR’s Solenoid Valves
EXAIR’s Electronic Flow Controller (EFC)

 

Some good examples of automated controllers are EXAIR’s Electronic Flow Controller (a.k.a. EFC) and EXAIR’s Thermostat controlled Cabinet Coolers.  

The EFC system uses a photo eye to detect when an object is coming down the line and will turn on the air for a set amount of time of the users choosing. This can be used to control the airflow for all of EXAIR’s products. EXAIR’s Thermostat controlled Cabinet Coolers are used to control the internal temperature of a control cabinet or other enclosures. This is done by detecting the internal temperature of your cabinet and when it has exceeded a temperature which could damage electrical components it will open the valve until a safe temperature has been reached, then turn off.    

By turning off your compressed air, whether it be with manual or automated controllers, a company can minimize wasted compressed air and extend the longevity of the air compressor that is used to supply the plants air. The longevity of the air compressor is increased due to reduced run time since it does not need to keep up with the constant use of compressed air. Other benefits include less use of compressed air and recouped cost of compressed air. 

EXAIR’s Ball Valves sizes 1/4″ NPT to 1-1/4″ NPT

If you have questions about our compressed air control valves or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook