Choosing The Right Cabinet Cooler System

EXAIR Cabinet Cooler Systems provide heat protection for electrical enclosures, especially those in more “aggressive” environments. They’re durable & reliable, and unlike other devices (panel A/C, I’m looking at you), they’re impervious to environmental conditions and contamination…which they’ll also protect your electrical enclosures from. My colleague Jordan Shouse did a fabulous job of explaining how they work in a blog entitled (appropriately enough) “EXAIR Cabinet Cooler Systems – How Do they Work?” so I’ll get right to point of today’s blog, which is the selection process.

First, we need to calculate the heat load. If it’s for cooling a panel currently in operation, you need three things:

You’ll use the thermometer to “take the panel’s temperature”. See, we calculate the internal heat load (that’s the amount of heat generated by the components inside the panel) by using the difference between the internal air temperature, and the external air temperature. Since we’re essentially air conditioning the panel, it’s important to get air temperatures (from a thermometer) rather than surface temperatures (from a heat gun or similar instrument).

You won’t need the thermometer for this, but we’ll also need to know the maximum ambient temperature in the area where the panel is installed. This is to calculate the external heat load, and also determine if a High Temperature model is needed (more on that in a minute).

The tape measure is to get the length, width, and height of the panel. We also need to calculate the heat transfer surface area. A ruler or yardstick would work as well.

If there’s something cooling the panel already – whether it’s panel A/C, fan circulation of environmental air through the panel, etc. – we’ll need to know about that too, because you’ll be removing that for optimal performance of the Cabinet Cooler System.

Once you have all that, you can enter the data (and a few other things, which I’ll get to momentarily) at the above link to the Sizing Guide. If you’re a DIY type person (or control freak…no judgment from ME on that), there’s also a link there to our new Cabinet Cooler System Calculator. You can also print a copy of the Sizing Guide and email it or fax it in. Or…you can call me with the data. It only takes a minute to do the calculation, and we do it over the phone all the time.

Next, we need to know about the environment in which it’ll be installed, so we can specify certain parameters like:

  • NEMA rating. We make Cabinet Coolers for three distinct ratings, depending on the environment in which they’ll be installed.
    • NEMA 12 means it’s dust tight & oil tight, indoor duty. If no liquids or corrosives are present, this is probably what you’re looking for.
    • NEMA 4 means it’s dust tight, oil tight, splash resistant, indoor/outdoor duty. These have a low pressure relief valve for the Vortex Tube’s hot flow, and the exhaust from the panel, to maintain the splash resistant integrity of the panel.
    • NEMA 4X systems meet all requirements for a NEMA 4 rating, and are made of Type 303 Stainless Steel for corrosion resistance. We also make them in Type 316 Stainless Steel for higher levels of corrosion resistance, which is oftentimes specified in food and pharmaceutical environments.
  • Ambient temperature. If they’re going to be installed in areas where the temperature can exceed 125°F, there are some internal components made of plastic & buna that aren’t rated for that. In those cases, we specify a High Temperature Cabinet Cooler, where we replace those with components made of brass and Viton, respectively. Those are good for up to 200°F environments.
  • Atmospheric contaminants. All of our systems are, at a minimum, oil & dust tight per the above NEMA ratings. If a panel isn’t completely sealed – maybe there’s a cable bundle going through a loose grommet, or the door/front panel isn’t gasketed – then airborne stuff that you ideally want to keep away from sensitive electrical/electronic gear can still make it in. For those, we have two options:
    • Continuous operating systems will provide cold air flow for cooling and positive purge as long as compressed air is flowing to the Cabinet Cooler. That’ll keep the bad stuff out, but it’ll also get your panel colder than it needs to be, and you’ll pay for that with the increased cost of the full rated compressed air flow.
    • Non-Hazardous Purge systems allow Thermostat Control to turn off the compressed air flow when it’s not needed, and still pass 1 SCFM through the Cabinet Cooler (instead of full flow) when the internal temperature is at or below the Thermostat setpoint. These cost considerably less to run than Continuous Operation systems.
  • Thermostat Control. Agencies like Compressed Air Best Practices and the Compressed Air Challenge include panel cooling on their list of inappropriate uses of compressed air – EXCEPT when they’re thermostat controlled. EXAIR uses Solenoid Valves operated by bimetallic thermoswitches with superior response times, so the Cabinet Cooler doesn’t continue running once it’s cooled the panel to the setpoint temperature, and (more importantly) comes on as soon as the temperature rises above that setpoint to further guard against heat damage. They’re available in 120VAC, 240VAC, and 24VDC options.
The Thermostat’s (left) leads are spliced into the Solenoid Valve’s (bottom right) ‘hot’ lead, which essentially makes it an automatic temperature controlled ‘on/off’ switch for the Cabinet Cooler System. NEMA 4/4X versions include mounting hardware (top right).
  • Thermostat Control part 2. There are situations where the ability to change the regulated temperature is desirable. While the Thermostat’s setpoint can be changed, EXAIR’s ETC Electronic Temperature Control allows you to change it, at the push of a button. It also gives a continuous display of the actual temperature inside the panel that can alert operators to a potential overheating situation before the alarms start going off, or, if there are no alrms, before all those expensive electronic devices start to fry.
ETC Electronic Temperature Control can be used in a wide variety of applications.

EXAIR’s Cabinet Cooler Promotion also started June 1st if you’re interested in purchasing one for your process. For a limited time, you can order any of EXAIR’s Cabinet Cooler® Systems and get a FREE AC Sensor with purchase! Check it out here.

If you’d like to discuss the ease at which you can provide safe, effective, and reliable heat protection for electrical panels in almost any environment, give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Hazardous Location Cabinet Cooler Systems “Make Things Better”

In a previous arc in my career path, I worked on, and then built, and then sold industrial pumps, so I’ve been in my fair share of chemical plants. Did you ever wonder what all these places make? A decent number of them make what are called “intermediates”. These are compounds, solutions, & substances that aren’t found in stores, but go into almost all of the goods that ARE found in stores. One such company used to make commercials that explained it nicely:

I recently had the pleasure of assisting a caller from a company like this, who wanted to install three of our Hazardous Location Cabinet Cooler Systems in their facility. This particular company doesn’t make anything shown in the commercial above; they make intermediates for agricultural use (to paraphrase the commercial, “they don’t make fertilizer; they make fertilizer better”). As is the case in MANY chemical plants, a good portion of their real estate is classified as hazardous area (as defined by regulatory oversight agencies) AND subject to exposure to some fairly corrosive chemicals. Now, these places all go to great lengths to ensure safety for personnel AND equipment, through compliance AND design. So, when they needed to add durable & reliable heat protection to their electrical panels, they called EXAIR.

This was a pretty easy application, as the engineer I spoke to had gotten the internal heat loads from the equipment supplier, and already knew that 316SS construction was needed for the corrosive elements the equipment could be exposed to. The panel was in a Class I Div 2 area (flammable gasses or vapors may be present in the event of an accident or during unusual operating conditions). After calculating the external heat load, we specified a Model HZ4725SS-316 NEMA 4X (316SS Construction) Hazardous Location Cabinet Cooler System, rated for 1,700 Btu/hr, and Model 902021 24VDC HazLoc Solenoid Valve. These panels came equipped with temperature monitors that they could wire our valves into, otherwise we’d have supplied Thermostat Controlled systems.

EXAIR HazLoc Cabinet Cooler Systems are rated for Class I Div 1 & 2, Class II Div 1 & 2, and Class III environments.

EXAIR Cabinet Cooler Systems are available, from stock, to suit most any electric/electronic panel heat protection need:

  • Cooling capacities from 275 to 5,600 Btu/hr. Call me if your heat load is outside this range…we can look at customized solutions too.
  • NEMA 12 (IP54), 4, or 4X (IP66) ratings.
  • Thermostat Control – Standard, or Electronic Temperature Control.
  • Non-Hazardous Purge for contaminant exclusion on less-than-ideally sealed enclosures.
  • High Temperature models for ambient temperatures from 125°F (52°C) to 200°F (93°C).
  • Side Mount Kits when space is limited above the panel.
  • 316SS construction for particularly aggressive environments.
  • UL Classified for hazardous locations, just like the one I wrote about above.

If you’d like to find out how easy it is to provide durable and reliable heat protection for your electrical panels, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

UL Certifications Explained

If a product or device carries one of these markings, it’s been evaluated for safety by top professionals in the field.

You probably walked by many items in a department store that had a UL mark, and not even noticed.   What does this mark mean?  The Underwriters Laboratories (UL) is a third-party organization that verifies that products are safe for use.  They have been around for more than 100 years, and they are very important for checking the design of electrical systems.  In order to receive the UL stamp, it has to pass stringent tests for conformance and safety, and they register the items on a database for users to review.  EXAIR uses this service for our products.  EXAIR stands behind our products with the Underwriters Laboratories recognition.  I will go over the products that EXAIR manufacturers and the type of UL marks that we have. 

There are three main types of UL marks; UL Listed, UL Recognized, and UL Listed Classified. 

UL Listed:  All EXAIR Cabinet Coolers are UL Listed!  It is important to note that EXAIR was the first to ensure that your electrical panel’s NEMA rating remained when using our Cabinet Cooler Systems.  Our products underwent numerous tests and scenarios to verify that an operator will be safe during normal operations.   The tests for the Cabinet Cooler Systems included environmental exposure for the given NEMA type along with many other tests.  When you place a Cabinet Cooler onto your electrical panel, the degree of protection is not affected.  Our Cabinet Cooler Systems come in NEMA 12, NEMA 4, and NEMA 4X.  They are designed to keep the electrical components inside cool; stopping unnecessary shutdowns from excessive heat.  With the UL listed mark, the Underwriters Laboratories have deemed these products safe for operation throughout the US and Canada per their standards.  

UL Recognized:  The Gen4 Static Eliminators and Power Supplies are UL Recognized.  UL Recognition is most often seen with components, in a form of power supplies or circuit boards, that are used to power other parts. UL Recognition ensures the safety and efficiency of machinery used by operators. In other words, it certifies that a component within a larger instrument meets UL standards.  The Gen4 Power Supplies are used to generate ions with our Gen4 Static Eliminators.  These ions will remove any type of static that can cause jams, misalignment, and harmful shocks.  We offer two types of Power Supplies, a two port and a 4 port, to operate eight different styles of Static Eliminators.  And together, you can make sure that your operators are safe when using our products to remove static nuisances.    

UL Listed Classified: The UL Classified certification means that the product has been evaluated, tested and passed the test for being safe when installed within classified areas. This includes a large range of hazardous locations which according to OSHA is defined as an explosive atmosphere due to the presence of flammable gases (Class I), combustible dusts (Class II), or ignitable fibers and flyings (Class III).  Unlike the Cabinet Coolers above, the HazLoc Cabinet Cooler went through a more stringent test to operate in all classified areas.  Used with a purge system, the HazLoc Cabinet Cooler keep the electronics from faulting due to over-temp. 

Here are our registration number with UL for you to review:

Cabinet Cooler Systems:                                        E182292

Static Neutralizing Equipment:                             E138256

Hazardous Locations Cabinet Cooler Systems:     E498880

It is widely known that machines are the lifeblood of any business. Taking steps to protect your investment and your operators that use the equipment is essential for long-term success of a company.  The UL certification will give you that peace of mind.  Lastly, since UL is a third-party service, you can be confident that the UL label is a true sign of safety and longevity within electrical systems.  If you would like to discuss more about our UL listed products for removing static or cooling electronics, an Application Engineer at EXAIR will be happy to help you. 

John Ball
Application Engineer
Twitter: @EXAIR_jb

The UL Classified Mark

Safety, it’s a word that gets tossed around in both the work place and in your daily life.  From the beginning of time, people have been injuring themselves at work and at home. Today’s well known phrases “Hey watch this” or “Hold my Beer” became a popular way to say I am about to do something crazy and stupid and I know it. As someone who enjoys the outdoors and the thrills of extreme sports, I can attest from both personal experience and the experiences of those around me that people don’t make smart decisions. At a young age I had a laundry list of injuries longer than most people 10 years older than me. But even in the craziest of my stunts (i.e. running an 18’ waterfall in a kayak) there is a level of safety that is put into place. That safety can come from the practice it takes to develop higher skill (experience) or from the knowledge of experts around you. 

Companies have been trying to figure out ways to make offices and manufacturing plants a zero-incident environment for a long time. A lot of safety departments call this journey the Road to Zero and track each incident closely. Aside from policies and equipment modifications there are consulting and certification companies that focus solely on the safety of products used in manufacturing and production plants. One of the more prominent companies in the U.S. is UL or Underwriters Laboratories; this company was founded by an electrical engineer named William Henry Merrill in 1894. In 1893 an insurance company hired Merrill to perform a risk assessment on new potential clients, George Westinghouse and Nikola Tesla. This led him to realize the potential for an agency to test and set standards for product safety.

One example of a sought after and critical accreditation is the UL Classified Mark. The UL Classified certification means that the product has been evaluated, tested and passed the test for being safe when installed within classified areas. This includes a large range of hazardous locations which according to OSHA is defined as an explosive atmosphere due to the presence of flammable fluids (Class 1), combustible dusts (Class 2), or ignitable fibers and flyings (Class 3). These areas include everything from chemical plants to the food industry.

EXAIR’s Hazardous Location Cabinet Cooler

EXAIR has a Cabinet Cooler that can be used in these Hazardous Locations and earned the UL Classified Mark. The Hazardous Location Cabinet Cooler Systems are designed to be used with purged and pressurized systems in the following locations:

Class I Div 1, Groups A, B, C, and D
Class II Div 1, Groups E, F, and G
Class III

This means that the Hazardous Location Cabinet Coolers can be used in areas with explosive gas and vapors, combustible dusts, or ignitable fibers. 

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook