Air Quality Classes – Understanding ISO 8573-1:2010

ISO 8573-1:2010 is the international standard for Air Quality Classes. It lays the ground rules for acceptable levels of pollutants, particulate, moisture, and oil in a compressed air source.

This slideshow requires JavaScript.

Specification Example: ISO 8573-1:2010 [2:2:1]

This indicates Class 2 for particles, Class 2 for water, and Class 1 for oil.

Though the standard has detailed standards for maximum particle size, maximum pressure dew point and maximum oil content for different industries and/or environments (see Slide show above) we can generalize a bit and express the levels of air quality like this:

Plant Air – general plant compressed air used for air tools, nozzles etc.
Instrument Air – found in laboratories, paint and powder coat booths, used for climate control.
Process Air – used in food and pharmaceutical applications, electronics applications.
Breathing Air – used for breathing respirators, breathing tanks and hospital air systems.

Achieving the different levels of air quality can be done with 3 basic types of filtration.
     1. Particulate – a filter element removes particles larger than the opening in the filter material. Typically done with particles greater than 1 micron.
     2. Coalescing – use different methods to capture the particles; 1) direct interception – works like a sieve, 2) Inertial impaction – collision with filter media fibers, 3) Diffusion – particles travel in a spiral motion and are captured in the filter media.
     3. Adsorption – the filter element holds the contaminants by molecular adhesion.

Filters
EXAIR FILTER SEPARATORS

The higher the class your air needs to be the more of these filtration methods you will use. Adsorption will remove more and finer particles than a simple particulate filter. And many applications will use a combination of these methods.

EXAIR products, all of which need a source of “clean, dry air” will operate very well utilizing a source of plant air and only a particulate filter. Your process, dictate if you need to supply additional filtration methods for better air quality. For example, an automotive plant using compressed air to blow parts off will not need the kind of filtration a food handling facility will need while blowing a food product off. If you are using a lubricated compressor or have lubricant in your compressed air lines from another source, you will want to use a coalescing oil removal filter.

EXAIR stocks 5 micron particulate filters which are properly sized for each individual product as an option for our customers if they choose. We also stock coalescing oil removal filters for customers who may need to remove oil from the air. Replacement filter elements are also available and should be replaced at least twice a year, depending on the quality of your air.

Oil Removal Filter
EXAIR Oil Removal Filter

Remember to ask about filtration if you have any concerns about your air quality. We can assist in sizing up the proper filters to get the air quality we recommend for proper operation and longevity of our products. 

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Images Courtesy of  the Compressed Air Challenge

Comparing the Different Styles of Compressed Air Filters

Most of EXAIR’s line of Intelligent Compressed Air Products have no moving parts and require no maintenance. The caveat to the “no maintenance” aspect is proper filtration at the point of use. Many products have very tight orifices that could get clogged from any contaminants such as particulate, condensate, and lubricant. EXAIR recommends point of use filtration to be installed just upstream of any EXAIR Product for this purpose.

There are three primary types of compressed air filters: particulate, coalescing, and adsorption. Each have their own inherent characteristics and can be used in conjunction with one another. Each style is used to handle a different form of contaminant that’s present within the distribution system of your compressed air supply.

9001
EXAIR Model 9001 Auto-Drain Filter

Particulate filters – Particulate filters are available with different filtering mechanisms that allow you to control the particulate size that will be filtered out. The higher the level of filtration, the greater the pressure drop you’ll experience at the outlet of the filter. Styles are also available with either a polycarbonate bowl or metal bowls, depending on the application and environment.

Any filter with a polycarbonate bowl should have a metal guard on the outside to provide protection for personnel should a failure occur. In these styles of filters, compressed air is forced through a filter element that blocks any particulate contained within the air supply.

These filter elements are generally a sintered bronze material with filtration levels from 40-5 micron possible. Over time, the filter elements can clog and increase the pressure drop at the discharge of the filter. They’re relatively inexpensive and should be replaced yearly to maintain optimum performance and mitigate pressure drop. They also remove liquid drops as well from the air supply, containing them within the bowl. Styles with both manual-drains and automatic-drains are available that will drain the bowl of excess moisture automatically through the bottom of the filter.

9005
EXAIR Model 9005 Oil Removal Filter

Coalescing Filters – The coalescing filter is used to remove very fine water vapor as well as any residual oil. These filters are highly recommended to be installed just prior to any dryer that contains a media that would be compromised by any lubricant passing through it. Coalescing filters utilize an element typically made up of glass fibers that “coalesce”, or combine, the fine water vapor and oil aerosols until the droplet size becomes large enough that it drops off into the bowl or filter housing. With a coalescing filter, the most common cause of pressure drop increase is due to particulate clogging the filter element. Because of this, a particulate filter should always be installed just prior to any coalescing filters.

Adsorption Filters – The final type of compressed air filter is the adsorption filter. Where the particulate filters can remove the majority of contaminants and the coalescing filters the residual oil, they are not capable of removing lubricant vapors or oil. That’s where the adsorption filter comes in. In addition to removing the finest oil vapors, they also can eliminate odors from the compressed air supply. The oil vapors and odors adhere to activated carbon within the filter, removing them from the air supply. These filters are commonly found within the food processing industry, where any contaminants in the air supply could impact the integrity of the product.

EXAIR has a line of Automatic Drain Filter Separators and Oil Removal Filters, available from stock, to make sure the quality of your air supply is sufficient for proper operation of any EXAIR product. Feel free to give us a call and any of our Application Engineers will be happy to assist you.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Compressed Air Filtration – Particulate, Coalescing, and Adsorption Types

Compressed air systems will contain contaminants that can lead to issues and increased costs through contamination of product, damage to the air operated devices, and air line clogging and restriction. Proper air preparation is critical to optimizing performance throughout the plant operations.

Because there are different types of contaminants, including solid particles, liquid water, and vapors of water and oil, there are different methods of filtration, each best suited for maximum efficiency in contaminant removal.

Particulate Filters – The compressed air flows from outside to inside of the filter element. The compressed air first passes through a baffle arrangement which causes centrifugal separation of the largest particles and liquid drops (but not liquid vapors), and then the air passes through the filter element.  The filter element is usually a sintered material such as bronze.  The filter elements are inexpensive and easy to replace. Filtration down to 40-5 micron is possible.

9001
Particulate Type Filter with Sintered Bronze Element

Coalescing Filters – This type operates differently from the particulate type.  The compressed air flows from inside to outside through a coalescing media. The very fine water and oil aerosols come into contact with fibers in the filter media, and as they collect, they coalesce (combine) to form larger droplets towards the outside of the filter element. When the droplet size is enough the drops fall off and collect at the bottom of the filter housing.  The filter element is typically made up of some type glass fibers.  The coalescing filter elements are also relatively inexpensive and easy to replace. Filtration down to 0.01 micron at 99.999% efficiency is possible.

9005
Coalescing Type Filter with Borosilicate Glass Fiber Element

Adsorption Filters – In this type of filtration, activated carbon is typically used, and the finest oil vapors, hydrocarbon residues, and odors can be be removed.  The mechanism of filtration is that the molecules of the gas or liquid adhere to the surface of the activated carbon.  This is usually the final stage of filtration, and is only required for certain applications where the product would be affected such as blow molding or food processing.

When you work with us in selecting an EXAIR product, such as a Super Air Knife, Super Air Amplifier, or Vortex Tube, your application engineer can recommend the appropriate type of filtration needed to keep the EXAIR product operating at maximum efficiency with minimal disruption due to contaminant build up and unnecessary cleaning.

If you have questions regarding compressed air filtration or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB