EXAIR Vortex Tubes are for a Variety of Cooling Applications

Vortex tube
Cooling or Heating with the Vortex Tube

EXAIR Vortex Tubes are a low cost, reliable and maintenance free solution to a wide variety of industrial spot cooling problems.  They only requirement is a supply of compressed air as the power source.  Vortex Tubes have no moving parts and can produce temperatures that range from -50°F to +260°F (-46°C to +127°C).

Vortex Tubes produce two air streams one cold and one hot, the percentage of cold air flow from the inlet flow is referred to as the cold fraction.  The cold fraction is adjustable by the hot valve on the hot discharge side of the vortex tube.  Adjusting the hot valve results in both air temperature and air volume changes. The colder the air becomes, the volume of that cold air declines. So for very cold temperatures, a smaller volume of air is produced compared to a warmer air temperature.

For the vast majority of industrial cooling applications a larger volume of cool air will provide more efficient cooling than a lesser amount of very cold air.  Generally speaking the highest Btu/Hr values are in the 70-80% cold fraction range.

The exception to this would be in labs or special cases where the coldest temperatures are desired.  Adjusting a Vortex Tube is easy, simply insert a thermometer/thermocouple in the cold air exhaust and set the temperature by adjusting the valve on the hot end of the Vortex Tube.  You will know when you reach max refrigeration (80% cold fraction) as the cold air temperature will be 50°F (28°C) lower than the compressed air supply temperature.

EXAIR Vortex Tubes are constructed from stainless steel.  This ensures excellent wear resistance, corrosion resistance and assures years of reliable operation.  They are offered in 3 different size ranges (small, medium & large).  There are generators located inside the tube (user serviceable) that will change the volumetric flow.  The generators are available in a plastic construction or brass construction for high temperature applications.  The ranges 2 SCFM – 8 SCFM are designated as small Vortex Tubes, 10 SCFM – 40 SCFM are medium and 50 SCFM – 150 SCFM are large.  This feature allows you to customize or change your Vortex Tube for greater flexibility in a wide range of applications.

Vortex generator

Large Vortex Tubes are specified when a high flow of cold air is needed. There are 16 models to choose from in total.  Capable of providing 3,400 BTU/HR up to 10,200 BTU/HR of cooling power.  These have been used to cool high heat loads that are centrally located or to help cool samples of gases for testing.

Medium Vortex Tubes are the most popular – there are twenty to choose from, depending on the cold air flow rate and temperature you’re looking for. These can produce temperatures as cold as -40°F (-40°C) when set to a 20% Cold Fraction (which is the percentage of total supply air that’s directed to the cold end) and cold air flows as high as 32 SCFM when set to an 80% Cold Fraction, which will produce a cold air temperature of about 20°F (-7°C). Some common uses are cooling ultrasonic welds and brazed joints.

The Medium Vortex Tubes are so popular, in fact, that they’re incorporated into our Adjustable Spot Cooler and Cold Gun Systems. They come ready-to-go with mufflers, cold air hose kits, and magnetic bases, so they couldn’t be easier to use.

Adjustable Spot Cooler

Cold Gun Lineup

Small Vortex Tubes are great when low flows (less cooling power) will succeed, or if compressed air supply is limited.  There are 12 models in total to choose from. These are specified for much smaller applications, like cooling the needle of a sewing machine, small drill bits, etc. You can also get one with a cold air hose & magnetic base…that’s the Mini Cooler System.

Mini Cooler

If you would like to discuss Vortex Tubes, Spot Cooling, efficiency of your compressed air usage, quieter compressed air products and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Which Vortex Tube Do I Need?

Last week, I wrote a brief introduction to vortex tubes, titled One Item Generates ¼ Ton of Refrigeration and Fits in the Palm of your Hand.” In it I introduced the Vortex Tube and the other products made from Vortex Tubes: Cabinet Coolers, Cold Guns, Adjustable Spot Cooler and Mini Coolers. I also introduced the idea of a cold fraction.  Today, I want to talk about specific Vortex Tube models.

The flow from the cold side of the Vortex Tubeis characterized in two different ways. First, we characterize the air by ΔT (temperature drop) from the starting compressed air temperature. With a supply pressure of 100 PSIG, the drop in temperature can range from 54° to 123° Fahrenheit. Second, we characterize the flow of air in Standard Cubic Feet per Minute. The different models of vortex tube are design to provide a range of flows and temperature.

Vortex Tube Specification
Vortex Tube Specification Chart

When facing this list you have numerous choices that can be daunting. My priorities for selecting a Vortex Tube for a customer are twofold. First, you need the Vortex Tube that will work in your application. Second, I want to choose the model with the least amount of compressed air in order to solve their problem with the least amount of air possible. The smallest Vortex Tube is a model 3202. It also utilizes the least amount of compressed air, 2 SCFM. At 100 PSIG and an 80 percent cold fraction, it will produce a cold flow of 1.6 SCFM at 54° F  below your compressed air temperature. If your compressed air temperature is starting at 70° F, your cold temperature will 16° F. All of the Vortex Tubes will be able produce this same temperature drop, but depending on which Vortex Tube you use will determine the volume of flow produced at that temperature.

1.6 SCFM of flow 54° F below compressed air temperature will take 135 BTU/HR away from a small 100°F box, which is enough energy to cool a needle, a small sensor, or a tiny camera, but what if you have a bigger area you need to cool. Then you need to use a Vortex Tube that will produce more flow. The 3202, 3204, and 3208 will all produce air at the same temperature, but the 3204 and 3208 will produce more volume of cold air.  With the same parameters as above (100 PSIG of inlet pressure and 80 percent cold fraction) the 3204 will produce 3.2 SCFM of cold air and cool 275 BTU/Hr. out of a 100° F environment. The 3208 will produce 6.4 SCFM of cold air and cool 550 BTU/Hr. These larger Vortex Tubes could be used to cool a closed circuit camera in a hot environment or a small drill bit where coolant is prohibited or undesired. From here our product continue to produce more volume of flow and we can go up to our largest Vortex Tube, 3299 which will use 150 SCFM of compressed and cool up to 10,200 BTU/HR.

What if you have an application where you don’t need more air but 16°F  isn’t cold enough? Then you can adjust your cold fraction. Adjusting the cold fraction will allow you to increase the temperature drop. Opening the brass hot valve, will lower the cold fraction. As more air is allowed to escape out of the hot end of the Vortex Tube, the temperature and the flow rate of the cold flow decrease.  If you need to cool below a 50% cold fraction we recommend the 3400 series Vortex Tubes. At 100 PSIG this would occur when you need more than 100° F temperature drop.

Vortex Tubes can be used in a variety of cooling application. If you have any question about the topic discussed above please contact me or another application engineer.

Dave Woerner
Application Engineer

EXAIR At BI-MU With Italian Distributor

Lee with Magugliani team
Myself, Lee Evans, with the Magugliani team.

I had the pleasure of attending the BI-MU exhibition with our Italian distributor, Magugliani SRL, from September 30th – October 4th in Milan, Italy.  BI-MU is an exhibition dedicated to the Italian machine tool, robot, and automation industries.  And, our distributor is very keen on finding relevant applications and solving problems in these industries.

Adjustable Spot Cooler
An EXAIR Adjustable Spot Cooler w/ Single Outlet Hose Kit.

One of the most frequent applications we discussed was the use of the Adjustable Spot Cooler.  During milling operations or in lathe turning applications, considerable heat is generated when the cutting edge is applied to the work piece.  This heat can cause the metal (or other material being machined) to adhere or even weld to the cutting edge or flute of a bit.  Such a  condition presents quality control problems, and loss concerns due to machine tool downtime.

The Adjustable Spot Cooler can remove these problems from a machining application using only compressed air – no liquid.  By directing extremely cold air (as low as -30F) to the machining area, the heat is removed and the useful time of the cutting edge is in increased.  By cooling the precise area generating the heat, the Adjustable Spot Cooler can boost the productivity and quality of parts coming out of a machine.

If you have a similar application, or think an Adjustable Spot Cooler may be a positive addition to your application, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer

**Thanks again to the Magugliani team for a GREAT exhibition!