Two Vacuums For The Price Of One

I recently noticed on my mortgage statement that I own more of my house than the bank does now. That made me feel good, and it also gave me pause for a moment of reflection on all the adventures I’ve had as a suburban American homeowner.  Good times…then, another adventure happened:

I’m in the middle of a major (to me) construction project in our house. Now, if you’ve ever worked with drywall, you know that anything you do to it creates dust….sometimes in great volume. No worries, though – I’ve got a real nice portable wet/dry vacuum that makes light work of drywall dust & scrap. So, when I’m done for the day, I leave the area as dust-free and tidy as it was before (“tidy” is relative…there are two teenagers and a dog in my house.)

For the record, the dog was more interested in the new hole in the wall than the teenagers.

For the record, the dog was more interested in the new hole in the wall than the teenagers.

Anyway, the adventure happened last Saturday morning, when the basement sump high level alarm went off. I had to get the water out of the sump, and fast, so I could find out what was wrong with my sump pump. No problem…I’ve got that real nice portable wet/dry vacuum, right? That was full of drywall debris. So, I hastily dumped it into the garage trash can (making another mess I had to clean up later) and removed the particulate filter so I could drain the sump. Which it did, like a champ. It was a stuck float on the sump pump, which I remedied quickly, and all was well with the world again. At least in my (and my bank’s) almost 1/4 acre of it.

Speaking of the different things you can use vacuums for, I had the pleasure of talking with a caller the other day about industrial vacuum applications. When they wash down a particular area of their facility, they end up with puddles of water, mixed with lots of solid debris, all over the floor. They were using electric wet/dry vacuums (like mine) but had a recent scare involving a damaged power cord on a wet floor. Luckily, someone saw it before anything bad happened, but it made them think about other options…like compressed air operated Industrial Vacuums.

They looked at some dual Venturi systems, which would indeed replicate the function of their electric vacs, but at a considerable rate of compressed air consumption…over 100 SCFM (over 25HP worth of typical industrial air compressor load.) Their compressed air system simply didn’t have the capacity for this. They already had an EXAIR Reversible Drum Vac, and had plenty of capacity to run it since it only requires 19 SCFM @80psig (about 5HP worth of compressor load,) but it wasn’t greatly effective at picking up the solid debris. That’s where the EXAIR Chip Vac comes in to our story…it uses only 40 SCFM @80psig (about 10HP worth of compressor load) to clean up the solid debris that doesn’t get sucked up with the puddles of water & sludge that the Reversible Drum Vac takes care of.

Reversible Drum Vac (left) and Chip Vac (right) – two EXAIR Industrial Vacuums for lower cost (purchase AND operation) than wet-dry combo air operated vacuums.

And…(back to the title of this blog)…a Reversible Drum Vac AND a Chip Vac STILL cost less to purchase than the dual Venturi system they were looking at. Lower purchase cost. Lower operating cost. Two independent systems. That’s a win-win-win.  If you have wet…dry…or wet & dry…messes to clean up, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Siphon Fed Atomizing Nozzle Improves Roll Forming Process

Last week I worked with a gutter manufacturer who was looking for a way to spray a light coating of vanishing oil on the rollers of a forming machine. Roll forming is commonly used when needing to maintain a constant and consistent shape or feature across the length of the part. In this particular case, a sheet of aluminum, used as a cover for the gutter, is fed into the machine where it passes over a series of dyes that bends “ribs” and punches small holes into the part to keep leaves or debris from settling on top, while allowing the rainwater to pass through the holes and into the gutter.

They were needing to apply the oil to the rollers because they were starting to see some irregularities in hole size as well as some deformities to the shape of the ribs due to heat being generated during the forming process. The customer was interested in using some type of atomizing spray nozzle in the hopes that providing an atomized mist of liquid may provide for a faster evaporation of the oil so there wasn’t much residue left on the part before packaging.

After further discussing the details, they advised that they were going to have the oil in a container about 12″ below the machine but didn’t have a way to pressurize or pump the liquid to the nozzle. Once again, EXAIR has the perfect solution with our 1/4 NPT Siphon Fed Atomizing Nozzles. These nozzles are the ideal solution where pressurized liquid isn’t available as they use the compressed air to the draw the liquid into the nozzle, up to 36″ of suction height, and mix it internally to produce a mist of atomized liquid spray. For this particular application, the Model # SR1010SS was a good solution as it provides a low flow rate of only 0.8 GPH and a tight spray pattern to focus right at the rollers to avoid any waste or overspray.

sr1010ss

Model # SR1010SS Siphon Fed Round Pattern Atomizing Spray Nozzle – 303ss construction, fully adjustable flow rate

EXAIR offers an extensive range of Atomizing Nozzles that can be used for light coating applications, like above, or for wider coverage areas or higher flow rates. For help selecting the best option to fit your needs, contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

How Do You Make Cement? Start with Clinkers

Last week I wrote about the use of the Atomizing Nozzles to create a fog for wet room curing of concrete samples poured during road construction.  This week, I had the opportunity to work with another customer about concrete, but this time it was regarding the the manufacturing process.  Invariably, I always learn something new , and for this interaction, it was the term ‘clinkers.’

Concrete is a composite material composed of coarse aggregate bonded together with a fluid cement that hardens over time.  The customer I was working with was a cement manufacturer.  Cement production is basically a 2 step process – 1) clinker is produced from raw materials and 2) cement is produced from cement clinker.

clinkers

Typical Cement Clinkers

To make the clinker (step one), several powder raw materials are fed into a rotary kiln.  The kiln is heated to very high temperatures, and when the materials are mixed and heated, new compounds are formed and hydraulic hardening occurs resulting in the formation of the clinker.

My customer needed a way to clean off the residual dust left on the transport belts, after the clinkers were transported to storage silos.  Due to the high temperatures in the area, we focused in on the EXAIR Type 303 Stainless Steel model of the Super Air Knife, as it can withstand temperatures up to 800°F.  The customer went with (3) of the Super Air Knife Kits, which include the Shim Set, Auto Drain Filter Separator, and Pressure Regulator w/ Gauge, for easiest installation with maximum functionality.

The Super Air Knife is a tried and true product for cleaning, drying, cooling and general blowoff for conveyors.  And with widths up to 108″ available, any size conveyor can be handled.

To make cement (step two), the clinker is ground into fine powder with other ingredients including gypsum (calcium sulphates) and possibly additional cementitious (such as blastfurnace slag, coal fly ash, natural pozzolanas, etc.) or inert materials (limestone). It is then stored or packaged and ready to be made into concrete.

To discuss your application and how an EXAIR Super Air Knife can benefit your process, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Can Counting Carbs Help in Your Compressed Air System?

Breakfast Cereal

Breakfast Cereal

Have you ever counted the amount of carbs that you eat?  People typically do this to lose weight, to become healthier, or for medical reasons like diabetes.  Personally, I like to eat cereal in the morning.  I will pull a box of cereal down from the cupboard and look at the Total Carbs field.  One morning, I looked at a box of gluten-free rice flakes and compared it to a peanut butter nugget cereal.  I noticed that the carbs were very similar.  The rice cereal had 23 grams of total carbs while the peanut butter nuggets had only 22 grams of total carbs.  Then I looked at the serving size.  The rice cereal had a serving size of 1 cup while the nuggets only had a serving size of ¾ cups.  So, in comparison, for one cup of nugget cereal, the total amount of carbs was 27.5 grams.  Initially, I thought that they were similar, but the peanut butter nugget was actually 20% higher in carbs.  This same “misdirection” occurs in your compressed air system.

Here is what I mean. Some manufacturers like to use a lower pressure to rate their products.  This lower pressure makes it seem like their products will use less compressed air in your system.  But, like with the serving sizes, it can be deceiving.  It is not a lie that they are telling, but it is a bit of misconception.  To do an actual comparisons, we have to compare the flow rates at the same pressure (like comparing the carbohydrates at the same serving size).  For example, MfgA likes to rate their nozzles at a pressure of 72.5 PSIG.  EXAIR rates their nozzles at 80 PSIG as this is the most common pressure for point-of-use equipment.  You can see where I am going with this.

To compare nozzles of the same size, MfgA nozzle has a flow rate of 34 SCFM at 72.5 PSIG, and EXAIR model 1104 Super Air Nozzle has a rating of 35 SCFM at 80 psig. From an initial observation, it looks like MfgA has a lower flow rating.  To do the correct comparison, we have to adjust the flow rate to the same pressure.  This is done by multiplying the flow of MfgA nozzle by the ratio of absolute pressures.  (Absolute pressure is gage pressure plus 14.7 PSI).  The ratio of absolute pressures is:  (80PSIG + 14.7) / (72.5PSIG + 14.7) = 1.09.  Therefore; the flow rate at 80 PSIG for MfgA nozzle is now 34 SCFM * 1.09 = 37 SCFM.  Now we can compare the flow rates for each compressed air nozzle.  Like adjusting the serving size to 1 cup of cereal, the MfgA will use 9% more compressed air in your system than the EXAIR model 1104 Super Air Nozzle.  This may not seem like much, but over time it will add up.  And, there is no need to waste additional compressed air.

Family of Nozzles

Family of Nozzles

The EXAIR Super Air Nozzles are designed to entrain more ambient air than compressed air needed. This will save you on your pneumatic system, which in turn will save you money.  The other design features gives the EXAIR Super Air Nozzle more force, less noise, and still meet the OSHA compliance.

If you want to run a healthier compressed air system, it is important to evaluate the amount of compressed air that you are using. To do this correctly, you always want to compare the information at the same pressure.  By using the EXAIR Super Air Nozzles in your compressed air system, you will only have to worry about your own weight, not your pneumatic system.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Picture: Breakfast Cereal by Mike Mozart Creative Commons Attribution 2.0 Generic License

Finding The Right Solution Through Dedicated Engineering Support

crate

Plastic crate in need of blow off after washing

An OEM of crate washing equipment in Lebanon recently contacted me about an application on one of their conveyors.  The conveyor carries a plastic crate out of a washer and excess water on the crate was presenting a problem in the application.  In order for the crate to move on to the next step in the machine, a blow off solution was needed, but the exit rate from the washer was inconsistent.  In a given minute there could be 5 crates exit the washer, or there could be 20.  So, the ideal solution needed to have intermittent control options with instantaneous on/off functionality.

We immediately began discussing Super Air Knives, not only because we show plastic crate blow off in one of our many videos, but also because these units are instant on/off with full compatibility with a flow control device.  Utilizing a flow controller, such as the EXAIR Electronic Flow Controller or PLC device, will allow for precise control of the blow off solution, limiting compressed air use to a minimum.

2016-12-07_164322

The first blow off system design

2016-12-07_164342

This layout utilizes Air Knives on each side of the blow off as well as the top

After discussing application details we came to the design shown above, using one 24” Air Knife on the top of the crate and two 9” Air Knives on the sides.  However, this OEM had purchased numerous 2” Flat Stainless Steel Super Air Nozzles in the past (model 1122SS) and had a number available on site.  Modifying the system to utilize the nozzles already on-site, we came to this design:

system-layout

The finalized layout for this blow off system. Click for a larger view.

This layout utilizes (1) 24” Stainless Steel Super Air Knife on the top of the crate and (2) sets of (3) 2” Flat Stainless Steel Super Air Nozzles on the sides, held in place with EXAIR Stay Set HosesNotice the independent pressure regulators for the nozzles and the knife.  This is to allow the customer to balance the air flows, because the 2” flat nozzles will create a higher force than the Air Knife when operating at the same pressure.

In this application we were able to help a returning OEM solve their problem with the right mix of needed products.  Exploring the problem and discussing numerous viable solutions led to the best fit for the application and customer.  That’s precisely why EXAIR Application Engineers are available for any application call or question.  If you’d like to explore an EXAIR solution we’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

Six Years At EXAIR: What I’ve Learned

Yesterday, I went “over 6” as an Application Engineer at EXAIR Corporation, and I’m still loving every minute of it! I came here with a fair degree of mechanical engineering & technology know-how, but, in reflection, I’ve learned an even fairer degree…some of which I’d like to share with you, dear reader, on the occasion of this ‘work-iversary:’

*Time spent doing something doesn’t always equal “experience.” If you work at something for, say, 20 years, and never learn anything new after your initial training, you don’t really have 20 years’ experience…you have one year of experience, 20 times. Big difference.

*Teamwork is critical to success.  The Patrol Method works.  The value of a “lesson learned” multiplies exponentially when it’s shared with others.  Design Engineers have a universal law of CAD that says “don’t ever draw anything twice.”  Application Engineers “don’t ever test anything twice.”

*Sometimes, there’s one way to find out.  That’s why we devote the resources we do to the Efficiency Lab.  If you want to know more about the performance of your current compressed air products, and how they might compare to one of our quiet, efficient solutions, so do we.

*A picture is worth a thousand words.  We prove this every day, whether it’s a photo (or short video even) of an application, a photo of a product or system for troubleshooting, or a photo of a nameplate or device for product comparison.  I’m old enough to remember doing business before email & digital photos, but I swear I don’t know how we ever got anything done.

*There’s always a ‘better mousetrap’ – and that’s the unofficial motto of EXAIR’s Engineering department.  That’s why we have so many more Atomizing Spray Nozzles than the did six years ago.  And Heavy Duty HEPA Vacs, long Super Air Knives and more product accessories.

*Relationships are vital.  At least a couple of days a week, I spend more time with my co-workers than my wife & kids.  We’re all in this together, and the more we help each other, the better off we are ourselves.

Next week, I’ll be back to blogging about a super cool compressed air product application. If you come up with one in the meantime, I’ll be happy to talk about it with you.  The conversation might just make it into next week’s blog, because one more thing I’ve learned is, when you’ve written 300 or so weekly blogs, “writer’s block” is a very real & present danger!

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Cookie Blowoff Using The Full-Flow Air Knife

A machine manufacturer was working with a food company who was looking to design a blowoff station for their cookie making process. During the production cycle, the cookie dough is put into a former that pushes the dough through round dyes that forms several rows of cookies across a conveyor. As the cookies travel down the conveyor, they are topped with ground peanut bits and sent through a flash freezing process. It was after this process, the company was looking to install the blowoff station to remove any excess peanut bits but were concerned if the air velocity was too high, they may remove too much of the ground peanuts or possibly blow the cookies themselves off of the conveyor. Another area of concern was the amount of space available to install the station was limited, so they were needing something “compact” so they could design the machine to take the least amount of real estate as possible.

The machine designer was somewhat familiar with our Air Knives, but was unsure which design would best fit the customer’s needs so they decided to reach out for assistance. After discussing the particulars, I recommended our 36″ Stainless Steel Full-Flow Air Knife Kit. Of the 3 designs of Air Knife we offer, the Super, Standard and Full-Flow, the Full-Flow Air Knife produces the lowest outlet velocities, it is also our smallest profile offering at only 1.25″ x 1″  for stainless steel construction. The Full-Flow Air Knife provides a laminar flow of air the entire length of the knife and uses a 30:1 amplification rate (entrained air to compressed air) for efficient compressed air usage. By incorporating the pressure regulator included in the kit, they would be able to easily control the exiting air velocity to effectively remove the excess peanut bits without ejecting the cookies from the line.

Full-Flow

The Full-Flow Air Knife is the ideal choice where mounting space is limited. Lengths available up to 36″ in aluminum or stainless steel construction.

For assistance in selecting the best Air Knife to fit your needs or for additional support with another application or EXAIR product, give me a call at 800-903-9247, I’d be happy to help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

%d bloggers like this: