Controlling Temperature And Flow Of An EXAIR Vortex Tube

If you need a reliable, consistent flow of cold air, look no further than the EXAIR Vortex Tube:

A 1/4 ton of refrigeration in the palm of your hand!

Getting the performance you want comes down to answering two simple questions:

What temperature do I need? 

Vortex Tubes produce a DROP in temperature, so your compressed air supply temperature is our starting point to determine what the actual cold air temperature will be.  The magnitude of the temperature drop is dependent on two factors:

  • Compressed air supply pressure – the higher the pressure, the higher the temperature drop.
  • Cold Fraction setting of the Vortex Tube – this is the percentage of the air supply that’s directed to the cold end.  The same temperature drop is produced, regardless of model, for a given Cold Fraction.  The lower the Cold Fraction, the greater the temperature drop (and hence, the lower the air temperature.)

EXAIR has two distinct series, or types, of Vortex Tubes:

3200 Series are used when Cold Fractions above 50% are desirable.  This provides maximum refrigeration…high flows and temperature drops that are optimal for many spot cooling applications such as tool cooling, setting hot melt adhesives, quick cooling of soldering/brazing, etc.

3400 Series are used for lower Cold Fractions (below 50%) and generate VERY cold air flow…as low as -50°F.  Some common applications for these are cryogenic lab sample cooling, circuit testing, or freeze seals in certain piping systems.

Temperature drops are dependent only on supply pressure and Cold Fraction setting. These values apply to any Vortex Tube, regardless of size/model.

Cold Fraction is adjusted by turning the Hot Air Exhaust Valve to let more, or less, hot air out, as shown in this short video:

What flow do I need?

Both the 3200 and 3400 Series Vortex Tubes are offered, from stock, in twelve distinct models of each series.  These are defined by the compressed air consumption, and the cold air flow is determined by the Cold Fraction setting.

Small Vortex Tubes come in three Models for each series, and consume 2, 4, or 8 SCFM when supplied with compressed air @100 psig.

Medium Vortex Tubes come in five Models for each series, and consume 10, 15, 25, 30, or 40 SCFM @100 psig.

Large Vortex Tubes come in four Models for each series, and consume 50, 75, 100, or 150 SCFM @100 psig.

Converting a Vortex Tube to a different Model (in the same size class) is as easy as changing the Generator (and the Taper Sleeve, for the Small Vortex Tubes):

The Generator and Taper Sleeve (*Small VT’s only) are changed by removing the Cold Cap.

So, for example, if you have a Model 3210 (10 SCFM consumption, 1,000 Btu/hr rated cooling) set to an 80% Cold Fraction, supplied with compressed air @100 psig & 70°F, it’s making a 16°F cold air flow of 8 SCFM.  If your situation calls for more flow, you can change the Generator…for example, if you convert it to a Model 3240 (40 SCFM, 2,800 Btu/hr rated cooling) – leaving the Cold Fraction at 80%, you’ll now get 32 SCFM of 16°F air.

What if you need colder air?  You can convert this same Medium Vortex Tube to a Model 3440 (40 SCFM consumption, max cold temperature) by changing the Generator again…and if you lower the Cold Fraction to 20%, it’ll make a -53°F cold flow of 8 SCFM.

Powerful and versatile, EXAIR Vortex Tubes are suitable for a wide range of applications requiring a consistent and reliable flow of cold air.  For help in selecting the right one for your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tube Kits Make Heat Removal A (Cool) Breeze

I recently had the pleasure of discussing a cooling application with a customer.  The caller was familiar with our Cabinet Cooler Systems, and wanted to incorporate the same technology into a spot cooling application.  Problem was, he wasn’t sure about exactly how much cold air flow, and at what temperature, would suit his needs best…this was on a brand new mold (for plastic parts) that had just arrived.  His idea was to order a few different Vortex Tubes, and experiment with them.

I agreed that trying a few different Vortex Tube models would be a quick and easy way to find a solution, but I had a quicker and easier way: the Model 3930 Medium Vortex Tube Cooling Kit.  This gave him all the Generators that fit the Medium Vortex Tube, allowing him to make any medium Vortex Tube model he desired.  He would also be able to adjust the Cold Fraction to get the most effective temperature drop as well.

EXAIR Vortex Tube Cooling Kits come with all parts necessary to effect a wide range of cold air flow & temperatures.

With the Vortex Tube in place, it was very easy to configure the optimal cooling…as he decreased the Cold Fraction (to get colder air) he replaced the Generator (to get higher air flow.)  His application (cooling molded plastic parts) was satisfied with a Model 3225, set to a 70% Cold Fraction…this gave him 17.5 SCFM of cold air flow, at temperature of around 0F (a 71F drop from their compressed air supply temperature, which is around 70F.)

Is an EXAIR Cooling Kit right for your heat removal application?  If you’d like to find out,  give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Video Blog: Medium Vortex Tube Cooling Kit

EXAIR offers (3) Vortex Tube Cooling Kits, and the video below will provide an overview of the medium size offering, for refrigeration up to 2800 BTU/hr (706 Kcal/hr.)

If you have questions regarding Vortex Tube Cooling Kits or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Cabinet Cooler Systems Save The Day, Every Day

Summertime temperatures get hot. Protect your electronics with an EXAIR Cabinet Cooler System.

As you may have seen in our most recent E-NEWS Special Bulletin, or experienced in real life (depending on where you’re located,) most of the eastern United States is seeing a pretty significant heat wave for early summer…or, as we call it at EXAIR, “Cabinet Cooler Season.”  And this year is kicking it off with a bang, for sure.

On Tuesday, when the E-NEWS email went out, I was on the phone, processing an order for a Model 4340 NEMA 12, 2,800 Btu/hr, Thermostat Controlled Cabinet Cooler System, to ship overnight to a user who wanted to protect the new drive they were replacing because theirs overheated.  They were up and running before noon on Wednesday.

On Wednesday, four local customers placed “will call” orders for Cabinet Cooler Systems.  I had the pleasure of talking with one of them, who was installing one for the very first time.  As he was looking over the Installation & Operation Guide before he left our building, he just wanted to make sure that hooking it up was as simple as it sounded…and it is.  We pulled the parts from the box and went over exactly how each step is performed, and he left feeling confident that he’d have it installed pretty quickly.  Just in case, I also got his email address and sent him a link to our NEMA 4 Cabinet Cooler System Installation Video Blog:

I don’t know what the rest of the summer holds in store, but I know this: if you have concerns about protecting sensitive, critical, and/or expensive electrical & electronic enclosures, EXAIR Cabinet Cooler Systems are the solution you’re looking for.  Easy to install.  Maintenance free operation.  Durable, UL Listed, and CE Compliant.  If you’d like to discuss your application and get one for yourself, call me; let’s talk.

***Order an EXAIR Cabinet Cooler System before July 31, 2017, and get a FREE AC Sensor!***

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Non Hazardous Purge Cabinet Cooler System Keeps Enclosure Dust Free

A mining company has processing machinery operating in a poorly ventilated, dusty environment (actually, it’s a mine…as you might have guessed.) This machine’s control panel was supplied with filtered vents and fans to cool the electronic components inside. The filters clog regularly, and even though they checked them frequently, it’s not always frequently enough to prevent the drive from overheating.

Based on a referral they got from another one of their facilities, they called to get more information on a Cabinet Cooler System. For total dust exclusion, our Non-Hazardous Purge systems are ideal…they’re thermostatically controlled, so compressed air consumption is responsible and efficient, but they also provide a small, continuous flow, even when the thermostat set point temperature is attained, and the solenoid valve is shut. This keeps a low positive purge volume of clean, dry air in the enclosure.

EXAIR Non Hazardous Purge Cabinet Cooler Systems provide reliable and efficient cooling in the most aggressive environments.

The caller already had the data from our Cabinet Cooler Sizing Guide, so specification was quick & easy. A Model NHP4340 NEMA 12 Non-Hazardous Purge Cabinet Cooler System – 2,800 Btu/hr – w/Thermostat Control was ordered and installed the next day. We keep them in stock for situations just like this.

If you have heat issues with electrical & electronic equipment enclosures, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Camera Lens Cooling with EXAIR Vortex Tubes in a High Temperature Environment

Connection side of camera lens housing. Dimensions shown are in cm.

A customer in Russia contacted our distributor in Moscow about an application to monitor the flow of melted glass.  In their application, the end user had installed (4) camera “eyes” with thermal insulation to instantaneously measure the melted glass flow.  But, the high ambient temperatures would cause the temperature of the camera lens to slowly increase during operation, eventually resulting in an overheating condition.  This overheating condition rendered the cameras inoperable until they were cooled below a temperature of approximately 40°C (104°F).

What this end user (and application) needed was a suitable solution to cool the lens of the camera to a temperature below 40°C (104°F).  A typical refrigerant based air conditioner wouldn’t work for this application due to space and temperature constraints, as the cameras are located close to the furnace with ambient temperatures of 50°C (122°F) or higher.

What did provide a viable solution, however, were High Temperature EXAIR Vortex Tubes.  Suitable for temperatures up to 93°C (200°F), and capable of providing cooling capacities as high as 10,200 BTU/hr., these units fit the bill for this application.

Full view of the camera lens housing. The camera lens is the portion protruding from the far left of the housing.

After determining the volume of compressed air available for each camera, and after discussing the solution options and preferences with the customer, they chose (4) model BPHT3298 Vortex Tubes, using (1) Vortex Tube for each camera.  The cold air from the Vortex Tube will feed directly onto the camera lens, keeping it cool even in the hot ambient conditions.  This removes lost productivity due to machine downtime, which in turn increases output and reliability from the application process.

High Temperature Vortex Tubes provided a solution for this customer when other options were unable to deliver.  If you have a similar application or would like to discuss how an EXAIR Vortex Tube could solve an overheating problem in your application, contact an EXAIR Application Engineer.  We’ll be happy to help.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Trouble Identifying an EXAIR part? Don’t worry, we’ve got you covered!

3240VT
EXAIR Model 3240H Vortex Tube with Hot Muffler Installed

 

Not a day goes by that we don’t receive a call from a customer that is having trouble identifying an EXAIR part. Due to the robust nature of our Vortex Tubes, they can be installed in applications for several years without any maintenance. When the time comes to expand that line, the labels may have worn off, the unit may be covered in grime or oil, or the personnel that originally ordered the product may no longer be with the company. In any case, one of the Application Engineers here at EXAIR will certainly be able to help!

I recently received an e-mail from a gentlemen in Indonesia who was suffering from that very problem. They had a Model 3240 Vortex Tube installed in a camera cooling application near a boiler. The engineer who designed the project was no longer with the company and they could not determine a Model number or when they had purchased it. They saw the EXAIR sticker, along with our contact information, and reached out for help. Vortex Tube’s come in different sizes, based on the available compressed air supply as well as the level of refrigeration needed. They’re available in (3) different sizes as well as Vortex Tubes for max refrigeration (R style generators) and Vortex Tubes for a maximum cold temperature (C style generators). In order to identify the Model number, you must look on the shoulder of the Vortex Tube generator. On it, there will be a stamp that indicates the generator style that is installed. In this case, the customer stated that there was a “40-R”, indicating to me that he had our Model 3240 Vortex Tube.

Our team of highly trained Application Engineers is here ready to assist you with any needs you may have regarding EXAIR products. With a little bit of investigative work, a quick discussion about the dimensions or a photo; we’re able to identify any of our products. If you’re considering expanding a current line into other parts of your facility, or perhaps adding a new location and need help identifying your EXAIR products; give an Application Engineer a call and we’ll be sure you get the right products on order!

Tyler Daniel

Application Engineer

Twitter: @EXAIR_TD

E-mail: tylerdaniel@exair.com