EXAIR Reversible Drum Vac Fills A 55 Gallon Drum in 90 Seconds Flat, And Empties It Just As Fast

There are a few ways to get the liquid out of a drum:

  • You can use a pump.  Some pumps are even made to mount straight onto the lid of the drum.
  • You can siphon the liquid out, if you can get the drum higher than where you want to put the liquid.  And if you have the time.
  • You can turn the drum over.  I used to do field service in chemical plants…some of them had drum handlers on fork trucks that could pick up and tilt the drum to pour the liquid out.  Some of them pushed the drum over and simply let the liquid spill into a pit or below-grade sump.

But pumps break down.  Siphoning is finicky and slow.  I’m loath to knock the skills of the fork truck operator that can pour out a drum like a sommelier pours a fine wine.  And I’ll never forget the first time I saw an operator half-roll/half-dance a drum to the edge of that pit and let the liquid dump as he dropped it precisely where he wanted it…however, even in the context of the inner recesses of a chemical plant, it was simple, but inelegant.

EXAIR has an engineered solution that preserves the simplicity, though: the Reversible Drum Vac.  Thread the standpipe into the bung connection and the RDV itself into the vent, and that drum is now a two-way pumping system, able to be emptied via a 10 foot long Vacuum Hose in as little as a minute and a half.  Turn the knob on the RDV to switch modes, and you can fill that same drum just as fast.

With a simple turn of the knob, the Reversible Drum Vac can fill or empty a 55 gallon drum in 90 seconds!

 

 

 

 

 

 

The EXAIR Reversible Drum Vac Systems come with a variety of configurations and options:

  • Made to fit an existing 30, 55, or 110 closed top steel drum in good condition.
  • Mini Reversible Drum Vac System comes with a 5 gallon drum.
  • Deluxe Systems add a Drum Dolly and a set of tools.
  • Premium Systems add a drum (30, 55, or 110 gallon,) an upgrade to Heavy Duty Aluminum Tools, and a 20ft compressed air supply hose with shutoff valve and pressure gauge.
  • High Lift Reversible Drum Vacs generate a suction head of 180″H2O for maximum lift.  They’re also specified for higher viscosity liquids.

Below is a great video that showcases just how easy it is to from installing the Reversible Drum Vac to using the Reversible Drum Vac and just how fast the RDV operates.

If you’re looking for a fluid handling solution for liquids in drums, give me a call and we’ll talk about which Reversible Drum Vac System is right for you.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Liquid Handling With Compressed Air: An Overview

There are some very good reasons to consider an EXAIR compressed air operated Industrial Housekeeping Product for liquid applications:

*Durability. No moving parts means nothing to wear or get damaged.
*Safety. No electricity means no dragging an energized cord through a wet area.
*Convenience. All you need is a supply of compressed air.
*Reliability. If you supply it with clean, dry air, it’ll run darn near indefinitely, maintenance free.

Depending on the needs of the application, we have different models to choose from:

Reversible Drum Vacs

If you’ve got a closed top steel drum that’s in good condition, look no further than the Reversible Drum Vac System.  It comes with everything you need to turn that drum into a powerful, 2-way liquid pumping system.  This is great if you just need to park the drum in one spot and suction out a sump or tank on a regular basis, using its 10 foot Vacuum Hose & Suction Wand.  They’re in stock for your existing 30, 55, and 110 gallon drums.  A 5 Gallon Mini Reversible Drum Vac System is also available; it includes the drum as well.

Reversible Drum Vac Systems come in sizes from 5 to 110 gallons.

If you’d like a little mobility, and a way to clean up floor spills, then the Deluxe Reversible Drum Vac System might be what you’re looking for.  It adds a Drum Dolly and our Spill Recovery Kit…it consists of a floor-length wand and a dual squeegee tool.  It also comes with a set of plastic tools (crevice tool, small skimmer, and two 20″ extensions) and a Tool Holder with clips for the tools, and magnets to attach to the drum.  We keep them in stock for your existing 30 and 55 gallon drums.  It also comes in the 5 Gallon Deluxe Mini Reversible Drum Vac System (drum included.)

 

Deluxe Systems add a Spill Recovery Kit, and a Dolly for your drum.

For a complete system, the Premium Reversible Drum Vac Systems have everything you need for most any liquid drum transfer job: they add a drum, lid & latch ring, as well as a compressed air supply hose & shutoff valve, and an upgrade to Heavy Duty Aluminum Tools.  They’re available with 30, 55, or 110 gallon drums; in stock.

Premium Reversible Drum Vac Systems come with everything you need, right out of the box.

Any of the 30, 55, or 110 Gallon systems are also available with our High Lift Reversible Drum Vac.  These provide for increased performance with more viscous liquids, and/or when the liquid needs to pumped from a depth of up to 15 feet.  They are outfitted identically to the standard Reversible Drum Vac Systems, except they come with a 20 foot Vacuum Hose.

The High Lift Reversible Drum Vac System converts a drum and dolly into a mobile pumping system.

As versatile as the Reversible Drum Vacs are, we also incorporate them into another 2-way pumping system, designed to help you get maximum life and performance from machine tool coolant and cutting oils:  The award-winning Chip Trapper Systems.

The vacuum hose (1) is attached to the barbed connection of the Chip Trapper (2). The directional flow control valve on the top of the drum (3) and knob on the pump (4) are set to the “fill” position. The air supply valve is opened to permit compressed air at 80-100 psig (5.5-6.9 BAR) to flow through the pump which pulls the liquid through the hose, then into the reusable filter bag (5). When all liquid is in the drum, the air supply is turned off. The filtered liquid can then be pumped out by setting the directional flow control valve on top of the drum and the knob on the pump to the “empty” position. Once the air supply valve is opened, the air pushes the liquid back through the hose while all solids remain in the reusable filter bag.

Powered by the Reversible Drum Vac, the Chip Trapper System draws the incoming liquid into the drum through a Filter Bag, which retains (or “traps”) any particulate as the drum fills with liquid.  Then, the freshly filtered liquid can be immediately pumped back out, while the particulate remains in the bag.  Once the bag is full, simply remove the drum lid, unhook the bag, empty it out, and return it to service.  The Chip Trapper System comes with two Filter Bags, in fact, so you can clean one while you use the other.  They are available, from stock, in 30, 55, and 110 gallon sizes.  They are all three available in High Lift configuration as well, with a 20 foot Vacuum Hose.

If you’d like to find out more about safe, reliable and effective liquid handling with EXAIR’s compressed air operated Industrial Housekeeping Productsgive me a call.

Russ Bowman
Application Engineer
Find us on the Web 
Follow me on Twitter 
Like us on Facebook

Cooling A Sewage Pump

Overheating pump at sewage facility
Overheating motor at Kuwaiti sewage facility

One of the great things about being an EXAIR Application Engineer is the variety of applications that find their way through our proverbial doors.  In a given day we could be anything from solve static problems for a garment manufacturer to prevent an overheating condition at a pumping station.

The latter of the applications mentioned above has played out over the last few days with an end user of our products in Kuwait.  This end user operates a sewage pumping station which uses 10 dry well pumps located 30m (99 ft.) below ground.  The rooms which house the pumps are not cooled, and as a result, the bearings within the pumps tend to overheat and take considerable time to cool.

What this application needed was an efficient and effective way to cool these motors (and their bearings) from a measured high of 90°C (194°F) to ambient temperatures.  And, when it comes to a convective heat transfer such as that found when cooling by passing an airflow over a material, the greater the volume of air, the greater the cooling.

Enter the Super Air Amplifier.  An air amplifier will multiply the volume of air fed through the unit.  For example, if we supply a 4” Super Air Amplifier with 80 PSIG line pressure, it will consume 29.2 SCFM and move a volume of 730 SCFM at the outlet of the unit.  At a distance of 6” away, the air volume will further amplify to 2,190 SCFM.

What this means for this application, is that we can use a small amount of compressed air to generate HUGE air flows over these motors, bringing down their temperatures and preventing the overheating condition.

If you have a similar application or are in need of a potential EXAIR solution, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

More Cooling At A Kuwaiti Sewage Station

Overheating electrical enclosure at Kuwaiti sewage station
Overheating control panels for sewage pumps

Last week I wrote a blog about cooling sewage pumps at a facility in Kuwait.  The pumps in question were overheating and needed a way to cool the pump motors down to ambient temperatures.  And, fortunately, our Super Air Amplifiers proved to be a great fit.

On the other side of the same facility, there were control panels for 3.3kV pumps that were also experiencing an overheat condition.  But, the motors were operating properly, it was the electrical panels that were tripping due to excessive heat.

The overheating of the electrical panels would shut down the pump motors, bringing operations to a screeching halt.  What the end user needed was a way to regulate temperature within the electrical panels that was small, effective, and easy to use.

This application, and its requirements, were a perfect fit for our Cabinet Coolers.  Cabinet Coolers are small, effective, easy to install, require no maintenance, and are incredibly easy to use – once installed and setup, they regulate themselves.

By receiving a completed Cabinet Cooler Sizing Guide, EXAIR engineers are able to calculate heat load for an enclosure and recommend a suitable solution.

If you have an overheating cabinet or electrical panel, call an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Line Vac Assists Pump Bottle Assembling

We have a customer in the packaging industry who packages liquid soap into bottles. Part of the process involves loading the push-pump dispenser into a capping machine to be assembled to the bottle after filling.

The problem was that the push-pumps came in cardboard boxes which had to be wheeled over to the machine and dumped into the hopper. This was rather difficult as the top of the hopper on the capping machine was over eight feet off the ground. So, the customer went looking for some sort of solution to suck the pumps up out of the box and into his hopper.

Fortunately, he found EXAIR Corporation and our Line Vac product. We discussed the rate at which he needed to convey the product, the distance and the dimensions of the parts. All was well suited for the 4” Aluminum Line Vac Model 6086. The customer tried a few different configurations with the Line Vac and his hose because manipulating a 4” hose around isn’t all that easy to do. So the customer came up with an ingenious little waist-high platform with the vacuum feed on one side into which the parts could be slid into and vacuumed up to the hopper.

The customer is going to evaluate the effectiveness for this method of loading. He was planning on a time savings of at least 10 minutes per box to fill the hopper. He is also banking on the fact that it is now a safer application because an operator no longer has to climb a ladder to fill the hopper.

Are you in the packaging industry? Do you have an odd-shaped product that you could use to move from point A to point B rather quickly?  Perhaps you have a hopper that needs to be filled? Give one of our Application Engineers a call today to discuss your application.

Neal Raker
Application Engineer
nealraker@exair.com

 

Priming the Pump

Yesterday, I had the opportunity to talk to a customer who was looking to prime a pump to remove a liquid out of an 8 foot deep tank.  He was pulling in the liquid through 1 1/2″ pipe and wanted to prime the pump in 5 seconds.  This was an interesting application for me, because it had some tangible numbers for the design.  In most applications with the E-Vac Vacuum Generators, a customer needs to lift something heavy and they need the job done fast. Those terms are very subjective, and we have to try and prognosticate what vacuum generator will work for the customer. Yesterday was different, the customer had some really defined limits, and I knew what I needed to do in order to satisfy the application.  The engineer in me was very happy with the situation.

Let’s start with the parameters.  He was looking to lift water 8 feet vertically.  8 feet of water corresponds to 7.06 inches of mercury.  The porous E-Vac can generate vacuum up to 21 inches of mercury and the non-porous E-vacs can generate 27 inches of mercury, so all of the E-Vac models can easily draw the liquid up the 8 feet of piping.  This is where most vacuum generator applications stop, but not this one.  If time is not a concern the 800001 will use the least amount of air (1.5 SCFM @ 80 PSIG of inlet) and get the job done, but how long will it take?

This is where you need to use the evacuation charts, from EXAIR.com. Below are two charts from the “Specs” tab for Inline E-Vacs.

E-Vac porous evacuation time

Non-porous Evacuation time

The 1 1/2″ Pipe that is 8 ft. long has volume of around .1 cubic foot.  We need to generate at least a 7.06 inches of mercury, so we will look at the 9 inches of mercury column. It will take the 810002 17.85 seconds to evacuate 1 cubic foot of pipe.  The 800001 will take 14.40 seconds to evacuate the same volume, and  it will use less air.  We will want to use the porous vacuum generator, because we don’t need a very high vacuum to get the job done. If the 800001 can evacuate 1 cubic foot in 14.40 seconds it should be able to evacuate .1 cubic foot in 1.44 seconds which is easily fast enough for the customer.  The math also told us the customer could use up to 27.7 feet of hose to lift up that 8 feet, if he needed to take a non linear path.  If we know that the customer needed to move the fluid more that 27.7 feet, we could move up to the next vacuum generator to get the job done faster, but it was not necessary in this application.

Dave Woerner
Application Engineer
Davewoerner@EXAIR.com
@EXAIR_DW

I’m Back! But My A4 Isn’t…Commence Troubleshooting

Last week I enjoyed the company of Airtec Servicios, Dansar Industries, and Global Automation (EXAIR’s distributors in Mexico and parts of South America).  We met in San Luis Potosi, Mexico, for an EXAIR training event that covered all topics of EXAIR products.

Following my return to the States, I dug into a project at home that I’ve been working on here-and-there; my 98 Audi A4.  In an earlier blog post I showed the damage done to the cylinder head when a valve-train component failed and a few valves were bent.  After rebuilding the cylinder heads on a bench here at EXAIR, I finally got the engine back together and hit the key for the first time since I bought the car.

Fortunately, the valve timing was perfect and the engine fired right up.  Unfortunately, however, was the terrible knock from the bottom half of the engine – the half I left untouched during the initial repair.  (See image below for my feeling on the issue)

Lie_down_try_not_to_cry_cry_a_lot_cleaned_525Now I’m faced with a dilemma of the best course to take, and after chewing it over, I’ve decided to open up the bottom half of the engine and make the repair.  The most likely cause for the noise is a defective wrist pin or connecting rod.  When I open it up, I’ll be sure to take pics and share for those interested. I had thought repairing the top half of the engine would make the fix because most of the time that is the case. Similarly, we occasionally experience reduced performance in our Reversible Drum Vac. Most of the time (I’d speculate 95%-99%) a simple cleaning is all that is needed (see video demonstration here) because this product has no moving parts there is little to go wrong. Occasionally it is another issue that is causing reduced performance; for these times we have the Reversible Drum Vac troubleshooting guide:

lit6203-Reversible Drum Vac Troubleshooting

So, sometime soon I’ll run through the next troubleshooting steps for the engine in the A4. If you need help troubleshooting an EXAIR product or a compressed air application, please contact EXAIR.

In the meantime, the A4 is relaxing, hanging loose at home – and I am too.  Mexico was wonderful, and the people were more than kind.  But, it feels good to be home.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE