Volunteering Meets Engineering

We’ve shared our experiences of how EXAIR gives each employee the chance to volunteer at an organization they feel close to for an entire workday. This is a great benefit here as we get to see where each person’s interests and passions align and it sometimes gets groups of us out to spend time together doing good for others. While I’ve already used my day for the year by judging my alma maters Senior Design Tech Expo and seeing what the next generation of engineers has to offer, today I have the joy of going even further into the future generations and showcasing some garage engineering of how airflow works.

Today, I am going to be going to a Junior High School, not just any but the one my oldest attends. My best friend and I will be volunteering for their Color Run event which is a fundraiser they put on to end the year. They take a dyed powder and throw it into the air as contestants run around a field and complete various obstacles. At one of the meetings for the event, they were discussing how they went through an excessive amount of dye powder last year. They also mentioned how it didn’t work best as they had filled squeeze bottles that you would see in a restaurant with the powder to disperse as the kids come by. Well, here in Cincinnati it gets to be rather humid this time of year, so dry powder, mixed with humid air, and compression of being squeezed to disperse resulted in lots of clumping and eventually just handfuls of dye powder being dumped on kids. It also doesn’t give the big plume that they want.

1 – The Color Run, Grand Prix Edition (Melbourne 2014)

My friend and I have built a name for ourselves in the PTA as THE DADs. at the meeting, the PTA members looked at my wife who was attending, and asked if she could get THE DADs to show up for this event. Sure enough, there is no better reason to take some time off work than to douse your kid in colored powder, so we were hooked, and then the question came of, can they make this setup better. So the news came to us and we evaluated the old method. The system was simply not adapted to the scale they needed and moisture as well as the fact that some powders brick/cake when compressed wasn’t thought of. So we started brainstorming and our first thought was to take my generator and air compressor from the garage and connect a small Line Vac or even Super Air Amplifier to disperse the powder as we drop it into the entrained airflow. This setup would work, we simply don’t have the time and my generator is so loud the kids would need hearing protection. So then we looked at what we do have. I have a throw bag launcher that was constructed of an old CO2 tank and spring-loaded ball valve to get a weighted bag with a line into trees to help tie off for limb work. That is a single-shot kind of deal though, and we would be like a revolutionary war-fighter on the front line with the kids being the guerilla-like forces that don’t comply with the face-to-face combat style. So that’s out. Next, we laid out what we needed. It’s pretty simple, a large volume of air and a way to put the powder into the airflow.

Well, we both have leaf blowers, they provide a lot of air, but it is a constant flow and you can’t restrict it too much. So what can we do with a large volume of flow? Well, I happen to have a good number of PVC fittings from projects. So a good wye fitting and the leaf blower with continuous flow starts to look like a siphon-fed blow gun.

See the large volume of air will blow across the bottom of the wye fitting which will generate a low pressure on the extra leg of the wye. This gives us a draw of ambient air or in this case, an inlet port for the powder. Then the air and powder mix in the last bit of the discharge tube and voila, a plume of powder in whatever color we have on hand is created! Since I don’t have a good picture of our setup, here’s a video that helps validate our thoughts.

1 – Airbrush Inspired Leaf Blower Ball Shooter

One of the hardest things we had to do is to account for the flow of air being constant since a leaf blower that is powered does not have a quick on-off. This is one of the main benefits of using compressed air in a scenario like this, you can quickly turn it on and off to get rapid movement of air. Blowers tend to take time to spool up, like a gas leaf blower, and they don’t do well with restriction which is why some of these ball launcher designs blow the balls back up the feed tube, restriction of the barrel diameter.

While I didn’t get to use compressed air for this, I still got to use the principles that I have learned through my years here at EXAIR, and I’ll try to tweet out some images of our color plumes when I get a chance so follow my Twitter feed as well, @EXAIR_BF.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Chris Phutully from Australia, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

2 – Keith’s Test Garage, Airbrush Inspired Leav Blower Ball Shooter – retrieved from https://www.youtube.com/watch?v=oz1T70IjG4k

Siphon Fed No-Drip Atomizing Spray Nozzles

With 142 distinct models in stock, the Atomizing Spray Nozzles are easily EXAIR Corporation’s most diverse product line. If you need a reliable method of creating a fine mist of liquid flow with a flow rate as high as 303 gallons per hour (or as low as 0.1 gallons per hour,) with a spray pattern as large as 13 feet (or as small as 2-1/2 inches) in diameter, look no further – we have a spray nozzle for you, on the shelf and ready to go.

Siphon Fed models are the subject of today’s blog – they don’t require that the liquid be under pressure; you can feed them from the vessel the liquid comes in from a siphon height of up to 36 inches, or, for higher flows, from a gravity height of as low as 6 inches.

EXAIR Siphon Fed Nozzles work with non-pressurized liquids, either siphoned (left) or gravity fed (right.)

All Atomizing Spray Nozzles are available with EXAIR’s patented No-Drip option, which positively shuts off liquid flow when the compressed air supply is shut off.  One benefit of this is realized in coating applications, where an errant droplet of liquid would mar an otherwise smooth, even coating.  Operationally, though, it also means you can precisely turn the liquid flow on & off, in short, quick bursts, up to 180 times a second.

By far, the simplest way to do this is with a valve installed in the air supply line to the Atomizing Spray Nozzle.  A manual 1/4 turn ball valve works fine if you want the operator to control it.  Solenoid valves are often used to automate the process, and if you’ve got something to open & close the valve, you’re all set.  For example, if you want to spray coolant onto a cutting tool, just wire the solenoid valve into the on-off switch of the machine, like in the example shown to the right.

Alternately, our EFC Electronic Flow Control System provides a ready-to-go solution.  It comes pre-wired; all you have to do is plumb the valve into the air supply line and plug it in to a 120VAC grounded wall outlet.  When the photoelectric sensor “sees” the part you want to spray, it opens the valve.  When the part passes, it shuts the valve.  Easy as that.

I like this whole video, but if you just want to see the EFC Electronic Flow Control & Atomizing Spray Nozzle in action, skip to the 4:05 mark.

If you have a need to spray a fine, controllable liquid mist, EXAIR has a wide range of solutions.  Give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Reversible Drum Vac Fills A 55 Gallon Drum in 90 Seconds Flat, And Empties It Just As Fast

There are a few ways to get the liquid out of a drum:

  • You can use a pump.  Some pumps are even made to mount straight onto the lid of the drum.
  • You can siphon the liquid out, if you can get the drum higher than where you want to put the liquid.  And if you have the time.
  • You can turn the drum over.  I used to do field service in chemical plants…some of them had drum handlers on fork trucks that could pick up and tilt the drum to pour the liquid out.  Some of them pushed the drum over and simply let the liquid spill into a pit or below-grade sump.

But pumps break down.  Siphoning is finicky and slow.  I’m loath to knock the skills of the fork truck operator that can pour out a drum like a sommelier pours a fine wine.  And I’ll never forget the first time I saw an operator half-roll/half-dance a drum to the edge of that pit and let the liquid dump as he dropped it precisely where he wanted it…however, even in the context of the inner recesses of a chemical plant, it was simple, but inelegant.

EXAIR has an engineered solution that preserves the simplicity, though: the Reversible Drum Vac.  Thread the standpipe into the bung connection and the RDV itself into the vent, and that drum is now a two-way pumping system, able to be emptied via a 10 foot long Vacuum Hose in as little as a minute and a half.  Turn the knob on the RDV to switch modes, and you can fill that same drum just as fast.

With a simple turn of the knob, the Reversible Drum Vac can fill or empty a 55 gallon drum in 90 seconds!

 

 

 

 

 

 

The EXAIR Reversible Drum Vac Systems come with a variety of configurations and options:

  • Made to fit an existing 30, 55, or 110 closed top steel drum in good condition.
  • Mini Reversible Drum Vac System comes with a 5 gallon drum.
  • Deluxe Systems add a Drum Dolly and a set of tools.
  • Premium Systems add a drum (30, 55, or 110 gallon,) an upgrade to Heavy Duty Aluminum Tools, and a 20ft compressed air supply hose with shutoff valve and pressure gauge.
  • High Lift Reversible Drum Vacs generate a suction head of 180″H2O for maximum lift.  They’re also specified for higher viscosity liquids.

Below is a great video that showcases just how easy it is to from installing the Reversible Drum Vac to using the Reversible Drum Vac and just how fast the RDV operates.

If you’re looking for a fluid handling solution for liquids in drums, give me a call and we’ll talk about which Reversible Drum Vac System is right for you.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Siphon Fed Atomizing Nozzles Selection

If you follow along with our blog, you will notice that we have recently published a few entries relating to our Atomizing Nozzles. Today, I would like to continue this trend and focus on our Siphon Fed Atomizing Nozzles.

When recommending an Atomizing Nozzle for a particular process, we try to obtain as much “general” information as possible about the application, such as:

  • What type of spray pattern do you need?
  • How wide of an area needs to be covered?
  • What kind of flow rate needs to be achieved?
  • Is the liquid source pressurized?
  • What is the viscosity of the liquid?

While all of this information is going to help simplify the selection process, when we get a reply that the liquid isn’t pressurized, the choice becomes a little less complicated.

Our Siphon Fed Atomizing Nozzles are the preferred solution in applications where a pressurized liquid source isn’t available. With a steady supply of compressed air, these nozzles are able to draw the liquid into the nozzle with suction heights up to 36″ for our 1/8″ NPT and 1/4″ NPT nozzles, and up to 24″ for our larger 1/2″ NPT Models. They can also be gravity fed as well.

1/8″, 1/4″ and 1/2″ FNPT Sizes Available

These nozzles mix the fluid internally and are capable of handling viscosity up to 200 centipoise. Depending on the size of the nozzle and supply air pressure, flow rates can range from 0.4 GPH up to 60 GPH with either a round or flat fan spray pattern. There is also an adjusting valve for more or less liquid flow as needed to fit the demand of the application.

We also offer these nozzles with our patented No Drip feature which positively stops the liquid flow when the supply air pressure drops below 30 PSIG, eliminating the need for any additional valves or supply lines.

1/2″ NPT No Drip Model # SR6010SS

If you have an application requiring a fine mist of atomized liquid, give me a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN