The Case For The Cold Gun

Albert Einstein famously said, “Nothing happens until something moves.” And unless it’s in a perfect vacuum when it moves, there’s gonna be friction. Especially if it’s in contact with something else besides air.  And where there’s friction, there’s heat. This pretty much applies to almost every single evolution in the manufacture of…well, just about everything.

I’m probably not telling you anything you don’t already know, but heat can be a BIG problem.  It can:

  • Shorten tool life. Not only do worn tools take longer to cut, they can also present safety issues.  You can get hurt WAY worse by a dull blade than a sharp one.
  • Cause thermal expansion. If you’re machining something to a precise tolerance, and friction heat causes it to grow, it won’t be the same size when it cools down.
  • Melt plastics. And even softer metals.  This isn’t good for the part…or the tool, either.

Those are just a few of the problems heat causes in manufacturing operations, and they’ve been traditionally addressed with mist (liquid) coolants.  And they work just fine…most of them are water-based, and if you want to get heat out of a solid piece of something, water will do the job VERY quickly.  Other additives in the coolant provide a measure of lubricity, corrosion control, emulsion prevention, etc.  It’s easy, well-known, and time-tested.  There are some drawbacks, however:

  • It can be messy.  When a part (or a tool) in motion gets sprayed down with liquid, it tends to fling that liquid all over the place.  That’s why most machines fitted with mist coolant have spray shields.
  • Not only is it a hassle to clean up, if you don’t stay on top of the clean-up, it can lead to slip hazards.
  • Speaking of hazards, if you can smell that mist (and you know you can,) that means you’re breathing it in too.  Remember the lubricants, corrosion inhibitors, emulsion preventers, etc., I mentioned above?  Yeah…they’re not all what you might call “good for you.”
  • Recirculation systems are common, which means the coolant sump is gathering solids, so the lines and/or spray nozzles can clog and be rendered useless.

EXAIR Cold Gun Aircoolant Systems not only address all of the above problems with heat, but eliminate all the problems associated with liquid coolant:

  • They incorporate EXAIR’s Vortex Tube technology to produce a stream of cold air.
  • They’re reliable.  There are no moving parts; if you supply them with clean, dry air, they’ll run darn near indefinitely, maintenance free.
  • They’re quick & easy.  With a built-in magnet for mounting and a flexible cold air hose, you can be be blowing cold air right where you want it as quickly as you can attach an air hose and open the valve.
  • Speaking of opening the valve, that’s all it takes to run a Cold Gun.  They’re producing cold air at rated flow and temperature, right away.  No “ramp up” time to get into operation.
  • They’re clean.  That cold air stream just becomes…well, air.  No mess.  No slip.  No clean up.  No smell.  No problem.

We’ve got four Models to choose from, depending on the nature of the application:

Both the standard and the High Power come with a Filter Separator, and are available with a one, or two, outlet cold air hose.

If you need to cool parts or tools down, and want it to be effective and clean, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Super Air Knife Makes EVERYTHING Better

When we compare the EXAIR Super Air Knife to other methods of providing a curtain or sheet of air flow in terms of operating cost, efficiency, safety, and sound levels, the Super Air Knife is ALWAYS the clear choice.

The EXAIR Super Air Knife is the most efficient and quietest compressed air blow off product on the market today.

The Super Air Knives successfully replace these, and many other methods of providing a curtain or sheet of air flow all the time, while saving compressed air and decreasing noise.  The word “replace” oftentimes means “do the same job as.”

What you’re about to read is NOT one of those times.

A paper products manufacturer has a machine that treats a specialty product, and the process generates ozone (O3) at levels that would exceed personnel exposure limits, so they need to be contained.  They installed a long piece of drilled pipe to blow an air barrier, but they could only run the machine at about 65% of their desired capacity before the ozone level in the operators’ area exceeded their limits.

This company was familiar with several of our product lines already…they had several Cabinet Cooler Systems, a Reversible Drum Vac, and Super Air Knives in a variety of applications, so they knew how they worked.  Since the barrier needed to be 120″ long, though, this was going to be a much larger scale than they were used to.

Not only was the drilled pipe loud and inefficient, it was not particularly effective either.

Still, the installation of two Model 110060 60″ Aluminum Super Air Knives, coupled with our Model 110900 Air Knife Coupling Kit, was quick and easy.  Then came the good part: they found they were able to operate the machine at 100% capacity, while keeping the ozone at a safe level in the operators’ area.

EXAIR Super Air Knives provided a total solution: quiet, efficient, and most of all, EFFECTIVE.

Then came the better part:  The machine was pretty loud (we couldn’t do anything about that,) at 93dBA when it was running.  With the drilled pipe in operation, it was 94.5dBA.  When they took that out and installed the Super Air Knives, there was no net increase in noise level…it remained at 93dBA.

THEN came the even better part: Compressed air consumption was reduced to about 30% of what the drilled pipe was using.  Right in line with our table above.  Just another validation of the trustworthiness of our published data.  As EXAIR’s President is fond of saying, “Claims are easy, proof is hard.”

If you’re looking for a quiet, efficient – and effective – solution for a compressed air product application, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Back Blow Air Nozzles Clean Inside Diameters

They say time flies when you’re having fun. Maybe that’s why I found it a little hard to believe it’s been almost two years since we introduced the Back Blow Air Nozzles. They’ve become yet another “textbook” solution to a great many applications:

*Model 1004SS M4 Back Blow Air Nozzles are used to dry the inside of a closed cylinder after a zinc bonding process.  They’re also fitted to Model 1204SS-12-CS M4 Back Blow Safety Air Gun to remove chips & cutting fluid from freshly cut pipe ends.

*Our Model 1006SS 1/4 NPT Back Blow Air Nozzle won Plant Engineering Magazine’s “Product Of The Year” Bronze Award in 2015, and are successfully employed in a wide range of uses:

  • Blowing out splined bores by a gear manufacturer
  • Quickly cleaning out spindles between tool changes by a CNC machinery operator
  • Removing the last bits of powder from spent toner cartridges by a printing equipment recycler

*The Model 1008SS 1 NPT Back Blow Air Nozzle is becoming famous in hydraulic cylinder repair shops…after a cylinder bore is honed, one quick pass of the powerful blast it produces cleans bores from 2″ to 16″.  We can even put it on the Model 1219SS Super Blast Back Blow Safety Air Gun, with a 1ft, 3ft, or 6ft extension.

EXAIR Back Blow Air Nozzles come in three sizes, for bores from 1/4″ to 16″ in diameter!

If you want to see how they work, check out this video:

I could have sworn Lee Evans just made that video, but apparently, it’s over a year old now.  Time does indeed fly, and I promise we’re having fun!  If you’d like to find out more about how a Back Blow Air Nozzle – or any of our engineered compressed air products (old or new) – can make your operations quieter, more efficient (and hence, probably, more fun,) give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Super Air Knife Plumbing Kit Allows Installation In Tight Quarters

I recently had the pleasure of helping a long-time user of our Super Air Knives with a challenging application. They already use quite a few of our Model 110012SS 12″ Stainless Steel Super Air Knives to clean & dry their nonwoven material as it’s being rolled for packaging. They like them because they’re quiet and efficient, but also because they’re durable…this particular product off-gasses a mildly corrosive vapor, which used to corrode other equipment in the area. Not only does the Stainless Steel Super Air Knife resist corrosion itself, the air flow keeps these vapors contained. Two birds, one stone.

They have a new product…same kind of material, but much wider…that needed to be blown off, and the identified the Model 110060SS 60″ Stainless Steel Super Air Knife as a “no-brainer” solution. Thing is, it had to be a pretty even air flow across the length, and a 60″ Super Air Knife has to get air to four ports across its length for optimal performance. And, they wanted to install it at a point where it would serve not only as a blow off, but as a vapor barrier, just like the 12″ Super Air Knives they’re already so fond of. The space was a little limited, though, so they opted for the Model 110060SSPKI 60″ Stainless Steel Super Air Knife with Plumbing Kit Installed, which allowed them to simply run an air supply line to both ends.

EXAIR SS Super Air Knives can be ordered with a Plumbing Kit installed, or you can easily install a Plumbing Kit on your existing Super Air Knife.

If you want to find out more about an engineered solution for your compressed air application – cleaning, drying, vapor barrier, or all of the above – give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

The Old One-Two: Super Air Knives And Super Air Nozzles

The EXAIR Super Air Knife is THE ideal, efficient, and quiet solution for most any blow off application. We know this for a fact; we’ve been making them for years, folks all around the world have been buying them for years, and they keep coming back for more. They’re popular enough that over the years, we’ve introduced Mounting Systems and Plumbing Kits for ease of installation, and when Coupling Kits (to join multiple Super Air Knives together for greater lengths) became big sellers, we “upped our game” and started making Super Air Knives up to nine feet (108″) long. And certain applications (I’m looking at YOU, lumber and paper industries) order multiples of THOSE, and our Coupling Kits. Quite literally, there’s no job too big for EXAIR Super Air Knives.

EXAIR Super Air Knifes come in a wide variety of lengths to suit a wide range of applications.

No matter how long they are, though, the laminar, high velocity curtain of air they generate only moves in one direction. So, if there are significant geometric features (holes, bosses, recesses, “nooks & crannies,” etc.) to be blown off, we’ll have to look at something supplemental.

Enter the EXAIR Blowoff Systems…it doesn’t get any easier than this: an EXAIR engineered Super Air Nozzle, attached to a flexible, repositionable Stay Set Hose, mounted to a Magnetic Base.  Put a hard hitting, high velocity, pointed flow of air right where you want it.  If the next piece is different, that’s no problem – just bend the hose to re-aim the air flow.

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

No matter what the requirements of your blow off application are, we have an efficient, quiet, and safe solution.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Custom Air Amplifiers To Meet Most Any Requirement

When I think of “special” in regard to Air Amplifiers, I’m more inclined to think of the applications they can be used in. I mean, the Air Amplifier itself is about as straight-forward as an engineered compressed air product can be:

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

Considering the simplicity of the product itself, they can be used for a large variety of “typical” applications:

  • Cooling
  • Drying
  • Cleaning
  • Ventilation
  • Fume Exhausting
  • Dust Collection

There are no shortage of “special” applications either.  They’re used successfully in Air Operated Conveyance applications (when the stronger vacuum head of a Line Vac isn’t required) and we’ve even got a customer who uses one instead of an E-Vac Vacuum Generator for a “pick & place” operation…they’re picking up small, porous fiber discs (sort of like a coffee filter) one at a time, and the E-Vac wanted to pick up a good part of the whole stack, no matter how low they turned the pressure.  And of course, I can’t think of anything more special about Air Amplifiers than this:

You have to read it to believe it.  Follow the link and click on “Case Study: Roaring Banana Breath”

With fifteen distinct models to choose from in a range of sizes (3/4″ to 8″,) materials (aluminum or Stainless Steel) and even a High Temperature model that’s rated to 700°F (374°C), we’ve still made a fair number of Custom Air Amplifiers too…thirty-four, to be exact, as of this writing.

I won’t bore you with all the details – I can’t, actually, because some of them are proprietary* – but here are some “regular” examples of “special” accommodations:

  • Connections: EXAIR Air Amplifiers have smooth bores on the inlet & outlet plenums that you can hose clamp a hose (or round duct) to if you need to get air flow from, or to, one place or another.  Sometimes, though, they’re going in to an existing system, so we’ve made them with flanges (150#RF and Sanitary Tri-Clamp, for example) or threads (NPT or BSPP.)  If you want to use something other than a standard hose or duct line, we can help.
  • Material of construction: Our durable, lightweight aluminum Super & Adjustable Air Amplifiers are just fine an awful lot of the time.  Our type 303 Stainless Steel Adjustable Air Amplifiers will hold up to heat and corrosives.  We’ve also in PTFE (Teflon™) as well as a range of metal alloys to meet specific corrosion or wear conditions.  If your environment calls for a little something extra, we can help.
  • Assembly: Super Air Amplifiers are fitted with a stock shim that gives you published performance.  We’ve got other thicknesses, though, if you need more (or less) flow, though.  Adjustable Air Amplifiers are, well, adjustable…you just thread the plug in/out of the body until you get the results you want.  Sometimes the user knows what shim they want in a Super Air Amplifier, or what gap their Adjustable Air Amplifier needs to be set to, and we can assemble it accordingly.  If you have a ‘tried-and-true’ performance setting and want it met right out of the box, we can help.
  • Assembly, part 2: Good engineering practices call for lubrication on O-rings and threaded connections, and we use high quality, general purpose compounds when assembling our Air Amplifiers.  These are detrimental, however, in certain situations (silicone exclusion areas, I’m looking at you.) If certain chemicals or compounds are prohibited by your application, we can help.

*Let’s say you’ve done the “heavy lifting” to call out one (or more) of these special design features.  If we make a custom product (and that’s not just Air Amplifiers, by the way) using directions based on your time and labor, we’ll treat that product as proprietary to you, and you alone.

EXAIR has 208 catalog pages worth of Intelligent Compressed Air Products on the shelf…8 of those pages are our Air Amplifiers.  If you want to talk about customizing one to meet your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Methods Of Heat Transfer

“Nothing happens until something moves.”
-Albert Einstein

These five words are the foundation on which the science of physics is built upon. This statement not only applies to the things we can see, but to those we can’t…like heat transfer.

OK; technically, we CAN visually observe the EFFECTS of heat transfer…that’s called “reading a thermometer.” But the actual mechanism of heat transfer takes place at a molecular level, and concerns the rate of motion of those molecules: the higher the rate of molecular motion, the higher the heat of the material. Hence, the higher the rate of CHANGE of that molecular motion, the higher the heat transfer rate is.

All you need for heat transfer to occur is a difference in temperature between two materials. Contact, or even proximity, helps…but not always. More on that in a minute. And keeping at least one of the materials in motion can help maintain the temperature differential. We’ll unpack that a little more too.

Let’s start with the three ways that heat is transferred…what they are, and how they work:

Conduction

What it is: The transfer of heat between materials that are in physical contact with each other.

How it works: If you’ve ever touched a hot burner on a stove, you’ve successfully participated in the process of conduction heat transfer.

Convection

What it is: The transfer of heat through a fluid medium, enhanced by the motion of the fluid.

How it works: If you’ve ever boiled water in a pan on a hot stove burner, you’ve successfully participated, again, in the process of conduction heat transfer (as the burner heats the pan) AND convection (as the heated water in the bottom of the pan both transfers heat through its volume, and moves to the surface.)

Radiation

What it is: Remember what I said earlier about how you don’t always need contact or proximity for heat transfer? Well, this is it…the transfer of heat through empty space, via electromagnetic waves.

How it works: If you didn’t actually TOUCH the hot stove burner, but felt your hand getting hot as it hovered, then you’ve successfully participated in the process of radiation heat transfer. OK; it’s a little convection too, since the air between the burner and your hand was also transferring some of that heat. The best example of STRICTLY radiation heat transfer I can think of is the sun’s rays…they literally pass through 93 million miles of empty space, and make it quite warm on a nice sunny day here on Earth.

Regardless of how material, or an object, or a system receives heat, engineered compressed air products can be used to efficiently and effectively remove that heat.  For the record, they employ the principles of both conduction and convection.  If you’d like to discuss a heat transfer application, and the way(s) that an EXAIR product can work in it, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook