## Don’t Fall Victim To Undersized Piping

Pressure drops, incorrect plumbing, undersized piping, insufficient flow; if you hear these terms from tech support of your point of use compressed air products or from your maintenance staff when explaining why a process isnâ€™t working then you may be a victim of improper compressed air piping selection.
Often time this is due to a continued expansion of an existing system that was designed around a decade old plan. It could also come from a simple misunderstanding of what size of piping is needed and so to save some costs, smaller was used. Nonetheless, if you can understand a small number of variables and what your system is going to be used for, you can ensure the correct piping is used. The variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed are shown below.

• Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
• System Pressure (psig) – Safe operating pressure that will account for pressure drops.
• Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
• Total Length of Piping System (feet)
• Piping Cost (\$)
• Installation Cost (\$)
• Operational Hours ( hr.)
• Electical Costs (\$/kwh)
• Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop. The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
Where:
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for. If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs. If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long-term expansion goals makes life easier. When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine. If the main compressed air system is undersized then optimal performance for the facility will never be achieved. By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies. All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

## Preventative Maintenance for EXAIR Filters

I read a white paper from Parker Hannifin about compressed air filters.  The idea behind the paper was to remember your filter replacements.  Compressed air can be dirty with water, oil, pipe scale, etc.  As the filters capture the contamination, it will start to build pressure drop.  Remember, pressure drop is a waste of energy in your compressed air system.

Majority of EXAIR products use compressed air for cleaning, cooling, conveying, static elimination, coating and more.  To help keep them running efficiently, it is important to supply them with clean, dry, pressurized air.  EXAIR offers a line of Filter Separators and Oil Removal Filters to supply quality air to your equipment.  In this blog, I will explain the two types of filters that we carry and the maintenance requirements.  Filters and preventative measures can play an important part in your compressed air system.

Filter Separators are used to remove bulk liquid and contamination from the compressed air stream.  They utilize a 5-micron filter with a mechanical separation to help remove large amounts of dirt and water.  This type of filter would be considered the minimum requirement for filtration.  Most of the Filter Separators come with an auto-drain to automatically dispense the collection of oil and water.  EXAIR offers a variety of port sizes and flow ranges to meet your pneumatic flow requirement.  For maintenance, the filter elements should be changed once a year or when the pressure drop reaches 10 PSID (0.7 bar), whichever comes first.  I created a list in Table 1 below showing the correct replacement element kits for each model number.  And for any reason, if the bowl or internal components get damaged, we also have Rebuild Kits as well.  Just remember, the air quality is very important for longevity and functionality of your pneumatic systems and even for EXAIR products.

The Oil Removal Filters can make your compressed air even cleaner.  They work great at removing very small particles of dirt and oil.  They are made from glass fibers and can remove particles down to 0.03 micron.  They are designed to collect small particles and to coalesce the liquid particles into a large droplet for gravity to remove.  Because of the fine matrix, Oil Removal Filters are not great for bulk separation.  If you have a system with lots of oil and water, I would recommend to use the Filter Separator upstream of the Oil Removal Filter.  As with the Filter Separator, the filter element should be changed once a year or at a pressure drop of 10 PSID (0.7 bar).  EXAIR also offers a variety of port sizes and flow ranges.  Table 1 below shows the replacement Element Kits as well as the Rebuild Kits.  If the application requires very clean compressed air, the Oil Removal Filter should be used.

By using EXAIR filters, they will clean your compressed air to prevent contamination on parts, performance issues, and premature failures.  As an ounce of prevention, you should add the replacement elements in stock and enter them in your preventative maintenance program.  With quality air, your pneumatic system and EXAIR products will provide you with effective, long-lasting performance without any maintenance downtime.  If you would like to discuss the correct type of filters to use in your application, you can speak with an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com

## Do I Have To Install A Compressed Air Filter?

Recently I took a call from an existing customer that is questioning their Heavy Duty Line Vac Kit setup. They are experiencing around a 38 psig pressure drop from before the filter in the system to the inlet of the Line Vac.Â  At first glance, they assumed this was due to the filter restricting the flow. They then posed the question, “Do I have to run this filter or can I take it out?Â  I mean I already have a filter at my compressor.” The answer is yes, install the filter. It will keep dirt, scale and condensate from entering the Line Vac or other components downstream. In the case of a Line Vac, a filter will also prevent this unwanted debris from getting into the material being conveyed.

However, this is a great question, especially when assuming the filter is causing the pressure drop – but that was not the case for this application.Â  So more questions were asked to our customer to determine what the root cause of the pressure drop could be. Seeing a pressure drop across a filter can be caused by several factors.

One would be an inappropriately sized filter. This can restrict the volumetric flow of air through to the point of use causing a pressure drop.Â  All of the filters supplied with our product kits are auto-drain, have 5 micron filter elements and appropriately sized to operate the product at 80 psig inlet pressure so this was not the problem.

The next issue could be that the filter is clogged, this brought on another question.Â  If you see more than a 5 psig pressure drop across a filter from EXAIR then we suggest changing out the filter element as it could be clogged and not permitting the full volumetric flow through.Â  This installation was fairly new and a quick test without a filter element installed proved it was not the filter element that was clogged.

That brought us to the last variable, the length, size, and number/type of fittings between the filter and the Heavy Duty Line Vac. This length of pipe was more than 30′ in length and was only appropriately sized for a 10′ length or shorter run.Â  The customer was using a 1/2″ Schedule 40 black iron pipe to feed a 2″ Heavy Duty Line Vac at 80 psig inlet pressure. The 2″ Heavy Duty Line Vac Kit will utilize 75 SCFM at 80 psig inlet pressure.Â  That will need a 1/2″ Sched. 40 pipe that is 10′ long or less in order to not have friction loss within the feed pipe.Â  Armed with this information the customer is researching whether or not the line needs to stay that long.Â  If it does, they will have to re-plumb the system with a minimum of a 3/4″ Sched. 40 black iron pipe.

Luckily this was all able to be discussed within a few hours of time and the customer is on their way to an optimal supply system for their in-line conveyor.Â  One brief phone call took this customer from lackluster performance and thinking a product was not going to work for what they need, to performing beyond their expectations, and being able to keep up with their production needs.

If you have a product or any part of your compressed air system that you question why it may be performing or not performing a certain way, please do not hesitate to reach out to our knowledgeable team of Application Engineers. We are always interested in finding a solution to your needs.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

## Friction Loss – Pressure Drops – Fitting Restrictions – Why Compressed Air Plumbing Matters

Over the weekend I was working on a car in my driveway and I needed a large volume of air at the far end of the car to try and unplug a clogged sunroof drain line.Â  Rather than trying to move the car while it was mostly taken apart, I just hooked up another air line extension and started to go to the drain.Â  Â Even knowing what I know as an EXAIR Application Engineer about lengths of tubing, air restriction, and fitting restrictions, I went ahead with the quick and easy “fix”.

I grabbed another 30′ – 3/8″ i.d. air line with 1/4″ quick disconnects (see why this is wrong with this blog) on both end, rather than getting out the 50′ long 1/2″ i.d. air line that I have with proper fittings that then reduce down to a 1/4″NPT at the end to tie into most of my air tools. By doing so I ended up hooking up a Safety Air Gun which then gave a very light puff of air into the tube and the clog in the line went nowhere.Â  As a matter of fact, it was almost like it laughed because the tubing vibrated as if the clog said, “Pfft I am going nowhere.”

I then, stepped back and evaluated what I had done in a rush to try and get a job done rather than taking the extra five minutes to get the proper air line to do the job.Â  Â I then spent 10 minutes putting that hose up and getting out the correct hose.Â  Then, with a whoosh and a thud the clog was launched into my yard from the clogged drain port and I finished the repairs.

If only I had watched Russ Bowman’s spectacular video on Proper Compressed Air Supply Plumbing the day before. Rather than wasting time with the quick “fix” that cost me more time and didn’t fix anything I should have taken a little more time up front to verify I had properly sized my lines for the job at hand.

If you would like to discuss compressed air plumbing, appropriate line sizes, or insufficient flow on your compressed air system, please contact an EXAIR Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF