## People of Interest: Daniel Bernoulli

Whenever there is a discussion about fluid dynamics, Bernoulli’s equation generally comes up. This equation is unique as it relates flow energy with kinetic energy and potential energy. The formula was mainly linked to non-compressible fluids, but under certain conditions, it can be significant for gas flows as well. My colleague, Tyler Daniel, wrote a blog about the life of Daniel Bernoulli (you can read it HERE). I would like to discuss how he developed the Bernoulli’s equation and how EXAIR uses it to maximize efficiency within your compressed air system.

In 1723, at the age of 23, Daniel moved to Venice, Italy to learn medicine. But, in his heart, he was devoted to mathematics. He started to do some experiments with fluid mechanics where he would measure water flow out of a tank. In his trials, he noticed that when the height of the water in the tank was higher, the water would flow out faster. This relationship between pressure as compared to flow and velocity came to be known as Bernoulli’s principle. “In fluid dynamics, Bernoulli’s principle states that an increase in the speed of fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluids potential energy”1. Thus, the beginning of Bernoulli’s equation.

Bernoulli realized that the sum of kinetic energy, potential energy, and flow energy is a constant during steady flow. He wrote the equation like this:

Equation 1:

Not to get too technical, but you can see the relationship between the velocity squared and the pressure from the equation above. Being that this relationship is a constant along the streamline; when the velocity increases; the pressure has to come down. An example of this is an airplane wing. When the air velocity increases over the top of the wing, the pressure becomes less. Thus, lift is created and the airplane flies.

With equations, there may be limitations. For Bernoulli’s equation, we have to keep in mind that it was initially developed for liquids. And in fluid dynamics, gas like air is also considered to be a fluid. So, if compressed air is within these guidelines, we can relate to the Bernoulli’s principle.

1. Steady Flow: Since the values are measured along a streamline, we have to make sure that the flow is steady. Reynold’s number is a value to decide laminar and turbulent flow. Laminar flows give smooth velocity lines to make measurements.
2. Negligible viscous effects: As fluid moves through tubes and pipes, the walls will have friction or a resistance to flow. The surface finish has to be smooth enough; so that, the viscous effects is very small.
3. No Shafts or blades: Things like fan blades, pumps, and turbines will add energy to the fluid. This will cause turbulent flows and disruptions along the velocity streamline. In order to measure energy points for Bernoulli’s equation, it has to be distant from the machine.
4. Compressible Flows: With non-compressible fluids, the density is constant. With compressed air, the density changes with pressure and temperature. But, as long as the velocity is below Mach 0.3, the density difference is relatively low and can be used.
5. Heat Transfer: The ideal gas law shows that temperature will affect the gas density. Since the temperature is measured in absolute conditions, a significant temperature change in heat or cold will be needed to affect the density.
6. Flow along a streamline: Things like rotational flows or vortices as seen inside Vortex Tubes create an issue in finding an area of measurement within a particle stream of fluid.

Since we know the criteria to apply Bernoulli’s equation with compressed air, let’s look at an EXAIR Super Air Knife. Blowing compressed air to cool, clean, and dry, EXAIR can do it very efficiently as we use the Bernoulli’s principle to entrain the surrounding air. Following the guidelines above, the Super Air Knife has laminar flow, no viscous effects, no blades or shafts, velocities below Mach 0.3, and linear flow streams. Remember from the equation above, as the velocity increases, the pressure has to decrease. Since high-velocity air exits the opening of a Super Air Knife, a low-pressure area will be created at the exit. We engineer the Super Air Knife to maximize this phenomenon to give an amplification ratio of 40:1. So, for every 1 part of compressed air, the Super Air Knife will bring into the air streamline 40 parts of ambient “free” air. This makes the Super Air Knife one of the most efficient blowing devices on the market. What does that mean for you? It will save you much money by using less compressed air in your pneumatic application.

We use this same principle for other products like the Air Amplifiers, Air Nozzles, and Gen4 Static Eliminators. Daniel Bernoulli was able to find a relationship between velocities and pressures, and EXAIR was able to utilize this to create efficient, safe, and effective compressed air products. To find out how you can use this advantage to save compressed air in your processes, you can contact an Application Engineer at EXAIR. We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com

## Custom Air Amplifiers: Customization to Fit Your Needs

EXAIR’s line of Air amplifiers can be found in thousands of applications across the world from everything as simple as blowing parts off to exhausting fumes. The Air Amplifier comes in two different styles either the Super Air Amplifier or the Adjustable Air Amplifier. Super Air Amplifiers come in a stock Aluminum Body with a diameter that ranges from ¾” to 8”. This differs from the Adjustable Air Amplifier which comes in either type 303 Stainless Steel or Aluminum and are Sized from ¾” to 4”.

Super Air Amplifiers are supplied with a .003″ (0.08mm) slotted air gap which is ideal for most applications. Flow and force can be increased by replacing the shim with a thicker .006″ (0.15mm) or .009″ (0.23mm) shim. Model 120028 is supplied with a .009″ (0.23mm) air gap. A .015″ (0.39mm) shim is available for Model 120028.

Even though there is a wide variety of sizes and materials for the Stock Air Amplifiers they don’t always match a customer’s specific need or application. Over the years EXAIR has produced a slew of different custom Air Amplifiers for a customer’s specific need and the following are just a few of what we have done.

• Depending on the environment certain specific materials may be required like the food industry which requires specific Stainless Steel for various applications. One customer had a special PTFE plug made for the Adjustable Air Amplifier to help pull a sticky material through the process. The PTFE helped prevent the material from depositing on the inside diameter of the Amplifier.
• For applications where mounting may be an issue, special attachments have been made to assist. For instances where an Amplifier may need to be mounted to a pipe, we manufactured a custom Stainless-Steel Adjustable Air Amplifier with class a 150 raised face flange.
• Applications that are in a hot environment may require a special high temperature version which has be developed to operate in areas up to 700°F. The High Temperature Air Amplifier was so widely sought after that we turned it into a stock item.

No matter what your application is EXAIR is capable to work with you to create custom solutions for your application. Whether you need a different material, size or shim thickness, EXAIR is able to meet your requirements. These Air Amplifiers represent only one of our many product lines that can be custom made to your specifications.

For more information on EXAIR’s Air Amplifiers or help with customizing any of EXAIR‘s Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web

## People of Interest: Daniel Bernoulli (2/8/1700-3/17/1782)

Daniel Bernoulli was born in the Netherlands in February of 1700. Mathematics was in his bloodline as the son of renowned Swiss mathematician, Johann Bernoulli. He and Johann’s brother, Jakob, both took jobs as professors at a university in Basel, Switzerland. Fittingly, Johann taught Daniel mathematics at a very young age. Daniel Bernoulli spent some time studying a variety of topics including philosophy, logic, and medicine. Daniel obtained his Bachelor’s Degree at the age of just 15, earning his Master’s Degree just one year later.

Daniel was well-known and was highly regarded among scholars throughout Europe. After spending some time teaching Botany, he switched to physiology topics in 1743. This continued for several years when in 1750 he was appointed to the chair of physics where he taught at Basel for 26 years. During this time, he also received a total of 10 grand prizes from the Paris Academy of Sciences for work he completed in astronomy, a variety of nautical topics, and magnetism.

Daniel is most commonly known for his work in developing what is now called Bernoulli’s Principle, which discusses the relationship between fluid speed and pressure. An increase in the speed of a fluid will occur simultaneously with a decrease in the fluid’s pressure or potential energy.

The air entrainment properties of some of EXAIR’s Intelligent Compressed Air Products can be explained through Bernoulli’s Principle. As high-velocity air exits the nozzle of a Super Air Knife, for example, a low-pressure area is created that speeds up and draws in ambient air at an astonishing rate of 40:1. The same also occurs with the Super Air AmplifiersAdjustable Air Amplifiers, and Air Nozzles. To find out how you can utilize this advantage to save compressed air in your processes, give us a call. An Application Engineer will be happy to help assist you in determining the most suitable products for your application.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com

## Custom Air Amplifiers for Special Applications from EXAIR

The EXAIR Super Air Amplifiers and Adjustable Air Amplifiers are used in 100’s if not 1000’s of applications and locations across the world.  For cooling, drying, and cleaning of parts as well as venting and exhausting of smokes and fumes, or dust collection – the Air Amplifiers are sure to get the job done.

The Super Air Amplifiers are made of aluminum and are sized from 3/4″ to 8″ to cover a wide range of applications. Compact and lightweight, no electricity, no moving parts, and instant on/off are just a few of the features.

The Adjustable Air Amplifiers are made of aluminum or type 303 stainless steel and are sized from 3/4″ to 4″, and with adjustable output, provide a wide spectrum of performance.  They have the same great features of the Super Air Amplifier with the added benefit of varying force and flow.

2″ Super Air Amplifier and 2″ Stainless Steel Adjustable Air Amplifier

Even with the wide variety of types, sizes, and materials of construction, a customer may have a special need and there are numerous ways that EXAIR can customize the Air Amplifiers.  I’ll touch on several from the basics to the most complex.

• The Super Air Amplifiers come with a stock shim that sets the performance seen in the catalog. There are other shim thicknesses available if more or less flow is preferred, and they can be installed at the factory if desired.
• The Adjustable Air Amplifiers are designed for varying output by turning the plug further in to or out of the body. If there is a performance setting that is preferred, we can test, adjust and set it to meet that performance, allowing to be installed and ready for optimum results.
• If the use of a special material will increase the benefit of the Air Amplifier, we can explore several options with you. One customer needed an Adjustable Air Amplifier with a PTFE plug to help draw a sticky material through a process and prevent the material from adhering to the surface of the Air Amplifier.
• For those applications where the Air Amplifier is to be installed into a piping system, custom design with flanged ends can be done. Recent designs include stainless steel Adjustable Air Amplifiers with class 150 raised face flanges, and another with sanitary Tri-Clamp style.

Adjustable Air Amplifier with PTFE Plug, Class 150 Raised Face and Sanitary Tri-Clamp Flanges

• A special High Temperature version was developed for moving hot air to surfaces requiring uniform heating while in a furnace or oven. This special design is rated for environments up to 700°F and its surface is protected from heat stress by a mil-spec coating process.  This special High Temperature Air Air Amplifier was so popular, it became a standard offering and is in stock!

1-1/4″ High Temperature Air Amplifier

For over 35 years, EXAIR has been designing and manufacturing the best performing and highest quality products in the marketplace. If you have a special requirement and in need of a custom solution, we’ve got the experience and history to solve most problems.

If you have questions about Air Amplifiers, custom Air Amplifiers, or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web

## Super Air Amplifier Overview – Vent, Exhaust, Cool, Dry, Clean

Vent, exhaust, cool, dry, clean -with no moving parts!  That tag line from the catalog section pretty much says it all about the EXAIR Air Amplifiers, both the Super Air Amplifier and the Adjustable Air Amplifiers. I want to share some more information about the Super Air Amplifiers.

In general, the air amplifiers employ the Coanda effect – a basic principle of fluid flow – to create air motion in their surrounding.  Through intelligent design, this surrounding fluid flow can be manipulated and exploited, creating an amplification of a small amount of compressed air.

How do they work? In the figure below – a small amount of compressed air flows into the unit (1) to an annular chamber (2). The air is then throttled through a small ring nozzle (3) at high velocity. This primary air stream adheres to the Coanda profile (4), which directs it towards the outlet. A low pressure area is created at the center (5), inducing a high volume flow of the surrounding air into the primary stream. At the exit, you have the combination of flows, resulting in a high volume, high velocity flow.

The amplification ratio – the outlet airflow compared to the compressed air flow is dependent upon the cross sectional area of the inlet, and the 3/4″ Super Air Amplifiers have 12:1 amplification ratios all the way up to the 4″ and 8″ Super Air Amplifiers with 25:1 amplification ratios! That is a lot of ‘free air’ to use for cooling, drying and cleaning.  And a lot of air or smoke that can be drawn at the inlet and vented away from the area. For more on the amplification ratios, see this -blog-

Each Super Air Amplifier has a patented shim (patent#5402938) that precisely sets the compressed air flow, and shim sets are available to install to increase the force and flow as needed.

The balanced outflow of air minimizes wind shear to produce a very quiet, powerful flow at sound levels up to three (3) times quieter than other air movers.  A 4″ Super Air Amplifier operated at 80 PSIG will have a Sound Level of just 73 dBA.

The video below shows the power of the Super Air Amplifier in inducing a high volume flow of surrounding air (for venting) into the primary air stream (for cooling/drying/cleaning)

Typical applications include venting weld smoke, cooling hot parts, drying wet parts, cleaning machined parts, distributing heat in mold & ovens, dust collection, and exhausting vent fumes.

If you have questions about the Super Air Amplifier or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web

## The Super Air Knife Vs. a Homemade Drilled Pipe Solution

A drilled pipe has been used for many years to blow compressed air across a span for cleaning, cooling, and drying.  They are a simple tool that was created from spare parts and many holes.  The cost to make this type of product is not expensive, but to use this product in your application is very expensive.  Similarly, an incandescent lightbulb is inexpensive to purchase, but it will cost you much more in electricity than a LED light bulb.  Since 1983, EXAIR has been innovating safe and efficient products to be used in compressed air systems.  In this blog, I will compare the drilled pipe with the Super Air Knife.

Even though you can find the components relatively easily to design your own drilled pipe, this blow-off design is very costly and stressful to your compressed air system.  Typically, the holes along the pipe are in a row next to each other.  As the airstream leaves from each hole, it will hit the airstream from the one next to it.  This will cause turbulent air flows which has inconsistent forces and loud noises.  Also, with turbulent air flows, the ability to entrain the surrounding ambient air is very small.  We call this the amplification ratio.  The higher the amplification ratio, the more efficient the blow-off device is.  For a drilled pipe, the amplification ratio is near 3:1 (3 parts ambient air to 1 part compressed air).

A colleague, Brian Bergmann, wrote a blog about the amplification ratio of the EXAIR Super Air Knife.  (Read it HERE.)  This blog demonstrates how EXAIR was able to engineer an efficient way to blow air across a span.  The unique design of the Super Air Knife creates an amplification ratio of 40:1 which is the highest in the market.   Unlike the drilled pipe, the gap opening runs along the entire knife for precise blowing.  This engineered gap allows for laminar air flow which has a low noise level, a consistent blowing force, and maximum amplification ratio.  With these benefits, the Super Air Knife can reduce the amount of compressed air required, which will save you money and save your compressed air system.

In comparing the drilled pipe to the Super Air Knife, I will relate both products in a simple cooling application.   Thermodynamics expresses the basics of cooling with an air temperature and an air mass.  Since both products are represented in the same application, the air temperature will be the same.   Thus, the comparison will be with the amount of air mass.  In this example, the customer did some calculations, and they needed 450 Lbs. of air to cool the product to the desired temperature.  At standard conditions, air has a density of 0.0749 lbs/ft3.  To convert to a volume of air, we will divide the weight by the density:

450 lbs. / (0.0749 lbs./ft3) = 6,008 ft3 of air

To meet this requirement, reference Table 1 below.  It shows the volume of air required by your compressed air system to meet this demand.  As you can see, your compressor has to work 13X harder to cool the same product when using a drilled pipe.  Just like the LED light bulbs, the Super Air Knife has more efficiency, more innovation, and uses less compressed air.  In turn, the Super Air Knife will save you a lot of money in electrical costs.  If you would like to see how much the Super Air Knife can save compared to the drilled pipe, we have that information in this blog.  (Read it HERE.)  For my reference, it will reduce the stress of your compressed air system.

if you would like to compare any of your current blow-off devices with an innovative EXAIR product, you can contact an Application Engineer.  We can do an Efficiency Lab to shine an LED light on saving energy and money with your compressed air.

John Ball
Application Engineer
Email: johnball@exair.com

## The Super Air Knife and the Amplification Ratio

The EXAIR Super Air Knife has a 40:1 amplification ratio.  So, what does this mean?  The definition of ratio is a relation between two amounts showing the number of times one value is contained within the other.  For the Super Air Knife, it is a value that shows the amount of ambient air that is drawn into the compressed air.  With an amplification ratio of 40:1, that means that there are 40 parts of ambient air for every 1 part of compressed air; which helps make the most efficient air knifes available in the market.

Most people think that compressed air is free, but it is most certainly not.  Because of the amount of electricity required, compressed air is considered to be the fourth utility for manufacturing plants.  To save on utility costs, it is important to use compressed air very efficiently.  So, the higher the amplification ratio, the more efficient the compressed air product.  Manufacturing plants that use open fittings, copper tubes, and drilled pipes for blowing are not efficiently using their compressed air system.  These types of products generally have between a 5:1 to 10:1 amplification ratio.  When EXAIR began, they knew that there was a better way in saving compressed air by increasing the amplification ratio.

EXAIR initially created a line of air knives called the Standard Air Knife and Full-Flow Air Knife.  They utilize a Coanda effect to blow air at a 30:1 amplification ratio.  These air knives were much more efficient for blowing air than the open fittings, tubes and drilled pipes.  But, EXAIR knew that we could design a more efficient air knife, the Super Air Knife which has a 40:1 amplification ratio.

I like to explain things in every day terms.  For this analogy, the amplification ratio can be represented by gas mileage.  Like your car, you want to get the most distance from a gallon of gas.  With your compressed air system, you want to get the most utilization for blowing.  With an EXAIR Super Air Knife, it has a 40:1 amplification ratio.; or, in other words, you can get 40 mpg.  If you use the EXAIR Standard or Full Flow Air Knife, you can get 30 mpg.  But, if you use drilled pipes, copper tubes, etc. for blowing, then you are only getting 5 to 10 mpg.  If you want to get the most “distance” from your compressed air system, you want to check the “gas mileage” of your blow-off components.

EXAIR can “tune up” your blow-off systems to make them efficient and safe by contacting an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com