The Super Air Knife Vs. a Homemade Drilled Pipe Solution

A drilled pipe has been used for many years to blow compressed air across a span for cleaning, cooling, and drying.  They are a simple tool that was created from spare parts and many holes.  The cost to make this type of product is not expensive, but to use this product in your application is very expensive.  Similarly, an incandescent lightbulb is inexpensive to purchase, but it will cost you much more in electricity than a LED light bulb.  Since 1983, EXAIR has been innovating safe and efficient products to be used in compressed air systems.  In this blog, I will compare the drilled pipe with the Super Air Knife.

Even though you can find the components relatively easily to design your own drilled pipe, this blow-off design is very costly and stressful to your compressed air system.  Typically, the holes along the pipe are in a row next to each other.  As the airstream leaves from each hole, it will hit the airstream from the one next to it.  This will cause turbulent air flows which has inconsistent forces and loud noises.  Also, with turbulent air flows, the ability to entrain the surrounding ambient air is very small.  We call this the amplification ratio.  The higher the amplification ratio, the more efficient the blow-off device is.  For a drilled pipe, the amplification ratio is near 3:1 (3 parts ambient air to 1 part compressed air).

A colleague, Brian Bergmann, wrote a blog about the amplification ratio of the EXAIR Super Air Knife.  (Read it HERE.)  This blog demonstrates how EXAIR was able to engineer an efficient way to blow air across a span.  The unique design of the Super Air Knife creates an amplification ratio of 40:1 which is the highest in the market.   Unlike the drilled pipe, the gap opening runs along the entire knife for precise blowing.  This engineered gap allows for laminar air flow which has a low noise level, a consistent blowing force, and maximum amplification ratio.  With these benefits, the Super Air Knife can reduce the amount of compressed air required, which will save you money and save your compressed air system.

In comparing the drilled pipe to the Super Air Knife, I will relate both products in a simple cooling application.   Thermodynamics expresses the basics of cooling with an air temperature and an air mass.  Since both products are represented in the same application, the air temperature will be the same.   Thus, the comparison will be with the amount of air mass.  In this example, the customer did some calculations, and they needed 450 Lbs. of air to cool the product to the desired temperature.  At standard conditions, air has a density of 0.0749 lbs/ft3.  To convert to a volume of air, we will divide the weight by the density:

450 lbs. / (0.0749 lbs./ft3) = 6,008 ft3 of air

To meet this requirement, reference Table 1 below.  It shows the volume of air required by your compressed air system to meet this demand.  As you can see, your compressor has to work 13X harder to cool the same product when using a drilled pipe.  Just like the LED light bulbs, the Super Air Knife has more efficiency, more innovation, and uses less compressed air.  In turn, the Super Air Knife will save you a lot of money in electrical costs.  If you would like to see how much the Super Air Knife can save compared to the drilled pipe, we have that information in this blog.  (Read it HERE.)  For my reference, it will reduce the stress of your compressed air system.

if you would like to compare any of your current blow-off devices with an innovative EXAIR product, you can contact an Application Engineer.  We can do an Efficiency Lab to shine an LED light on saving energy and money with your compressed air.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

The Super Air Knife and the Amplification Ratio

Super Air Knife

The EXAIR Super Air Knife has a 40:1 amplification ratio.  So, what does this mean?  The definition of ratio is a relation between two amounts showing the number of times one value is contained within the other.  For the Super Air Knife, it is a value that shows the amount of ambient air that is drawn into the compressed air.  With an amplification ratio of 40:1, that means that there are 40 parts of ambient air for every 1 part of compressed air; which helps make the most efficient air knifes available in the market.

Super Air Knife has 40:1 Amplification Ratio

Most people think that compressed air is free, but it is most certainly not.  Because of the amount of electricity required, compressed air is considered to be the fourth utility for manufacturing plants.  To save on utility costs, it is important to use compressed air very efficiently.  So, the higher the amplification ratio, the more efficient the compressed air product.  Manufacturing plants that use open fittings, copper tubes, and drilled pipes for blowing are not efficiently using their compressed air system.  These types of products generally have between a 5:1 to 10:1 amplification ratio.  When EXAIR began, they knew that there was a better way in saving compressed air by increasing the amplification ratio.

EXAIR initially created a line of air knives called the Standard Air Knife and Full-Flow Air Knife.  They utilize a Coanda effect to blow air at a 30:1 amplification ratio.  These air knives were much more efficient for blowing air than the open fittings, tubes and drilled pipes.  But, EXAIR knew that we could design a more efficient air knife, the Super Air Knife which has a 40:1 amplification ratio.

I like to explain things in every day terms.  For this analogy, the amplification ratio can be represented by gas mileage.  Like your car, you want to get the most distance from a gallon of gas.  With your compressed air system, you want to get the most utilization for blowing.  With an EXAIR Super Air Knife, it has a 40:1 amplification ratio.; or, in other words, you can get 40 mpg.  If you use the EXAIR Standard or Full Flow Air Knife, you can get 30 mpg.  But, if you use drilled pipes, copper tubes, etc. for blowing, then you are only getting 5 to 10 mpg.  If you want to get the most “distance” from your compressed air system, you want to check the “gas mileage” of your blow-off components.

EXAIR can “tune up” your blow-off systems to make them efficient and safe by contacting an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Super and Adjustable Type Air Amplifiers

The EXAIR Air Amplifiers are a powerful, efficient and quiet air mover, whose power can be harnessed for blowoff, cooling and ventilation applications. Using a small amount of compressed air, air amplifiers pull in large amounts of surrounding air to produce a high volume, high velocity outlet flow.  Quiet and efficient, output flows with amplification ratios of up to 25 times are possible. There are two types, the Super Air Amplifier and the Adjustable Air Amplifier.

The Super Air Amplifier, with sizes ranging from 3/4″ to 8″, has a patented design (patent #5402938) that uses a special shim to maintain critical position of the components parts. It is through this critical gap setting that a precise amount of compressed air is passed at exact intervals controlled by the shim toward the center of the of the Super Air Amplifier.  The jets of air create a high velocity flow across the entire cross sectional area, which in turn pulls in large amounts surrounding air, resulting in the amplified outlet flow.  Because the outlet flow remains balanced and minimizes wind shear, sound levels are typically three times lower than other types of air movers. The shims are available in thicknesses of 0.003″ (supplied as standard), 0.006″ and 0.009″, and changing to a larger shim will increase the force and flow of the outlet air. The 8″ Super Air Amplifier is supplied with a 0.009″ shim, with a 0.015″ shim available.

2″ Super Air Amplifier and Patented Shim Design

For high temperature applications (up to 700°F/374°C) a special 1-1/4″ High Temperature Air Amplifier is available, with performance equal to the 1-1/4″ Super Air Amplifier. Its surfaces are protected from heat stress by a mil-spec coating process. The High Temperature Air Amplifier is highly effective at pushing large amounts of hot air to areas that typically remain cool.

The Adjustable Air Amplifier, with sizes ranging from 3/4″ to 4″, does not use a shim, and has an infinitely adjustable air gap, which regulates the air consumption and outlet flow from a light breeze to a powerful blast. A highly effective air mover, it can be tailored to meet the exact air flow and force of your specific application. They are available in aluminum and in stainless steel (Type 303) for food service, higher temperatures (400°F/204°C) and corrosive environments.

6042.jpg
2″ Adjustable Air Amplifier, in Aluminum or Stainless Steel

Force and flow of the Adjustable Air Amplifier is changed by loosening the knurled lock ring and turning the exhaust end to open or close the gap.  Once the desired force and flow is achieved, the knurled ring can be tightened to lock the device at the current setting. Typically, an air gap of 0.002″ to 0.004″ provides the required performance.

The table below summarizes the key features of the Super Air Amplifier and Adjustable Air Amplifier.  Please contact an Application Engineer if you need assistance in making a selection.

Air Amp Selection Chart

Note that EXAIR can manufacture special Air Amplifiers to your specification including special flanged mounting style or with a PTFE plug to avoid sticky material build up.

To discuss your application and how a Super or Adjustable Air Amplifier or any EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Two Types of Air Amplifiers – Volume and Pressure

When the topic of Air Amplifiers comes up, there are two avenues to consider –  is it the air pressure or the air volume that you wish to amplify?  There exists technologies to amplify either parameter, and we will examine them both.

There may be equipment or processes within a facility that operate best at air pressures higher than can be delivered, due to air compressor limitations or the supply system. An Air Pressure Amplifier can take the existing compressed air supply, and boost the pressure allowing for the higher needed air pressure without requiring a dedicated compressor capable of operating at the higher pressure.

An Air Pressure Amplifier is basically an air pump, driven by a portion of the compressed air supply.  The pump cycles and compresses the remaining amount of compressed air to a higher outlet pressure. This higher output pressure can be used to operate the equipment or process that required the pressure levels that the base system could not supply. The drawback is that the pump system consumes a good amount of the compressed air volume, to power the pump which reduces the amount of air available for other equipment or processes.  This drives up the compressed air consumption for the system, and requires the extra capacity to operate.

The other type of Air Amplifier is the kind that amplifies the air flow volume. EXAIR manufactures this type of amplifier.

AirAmplifiers

The air flow amplification works by taking compressed air (1) and directing into an annular chamber (2). It is then throttled through a small ring nozzle (3) at high velocity. This primary stream of air adheres to the Coanda profile (4) and is directed through the outlet. A low pressure area is created at the center, inducing a high volume flow (5) of surrounding air to be drawn in and added to the main air stream. The combined flow of primary and surrounding air exits as a high volume, high velocity flow.

salworksani

EXAIR manufactures (2) types of Air Amplifiers, the Super Air Amplifier and the Adjustable Air Amplifier.  In addition, a special model for High Temperature applications is available.  Sizes range from 3/4″ (19mm) to 8″ (203mm) to meet most air flow requirements.  Air amplification ratios start at 12:1 for the 3/4″ model and increase to 25:1 for the 4″ and 8″ models.

Charts and tables are available to help determine the right Air Amplifier for the job.

If you have questions about the Air Amplifiers, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Super Air Knife – Free Air Via a 40:1 Amplification Ratio

Intelligent Use of Compressed Air – Most industrial facilities have at least one air compressor.  The compressor is used to power anything from pneumatic tools, air powered equipment, compressed air cylinders, blowoffs and many more types of operations.  Improper use of compressed air can lead to unnecessary energy costs, high noise levels and dangerous exposure of personnel to high pressure air.

The EXAIR Super Air Knife uses only 1/3 of the compressed air of typical blowoffs.

LSAKpr_2mb
Long Super Air Knife with Plumbing Kit Installed and using the model 9060 Universal Air Knife Mounting Kit to Blowoff Laser Cutting Debris

By taking advantage of the Super Air Knife’s highly efficient design and the action of air entertainment, the Super Air Knife draws in large amounts of surrounding free outside air into the air stream. The result is a strong powerful air flow made up of a small amount of compressed air and a large amount of ambient air.

Capture

  • Compressed air flows through an inlet (1) into the plenum chamber of the Super Air Knife. The flow is directed to a precise slotted orifice. As the primary airflow exits the thin slotted nozzle (2), it follows a flat surface that directs the airflow in a perfectly straight line.  This creates a uniform sheet of air across the entire length of the Super Air Knife. Velocity loss is minimized and force is maximized as room air (3) is entrained into the primary air stream at a ratio of 40:1.  The result is a well defined sheet of laminar airflow with hard-hitting force and minimal wind shear is delivered.

By using a Super Air Knife – and the advantage of the high amplification via air entertainment – for part blowoff, cooling, or drying you can reduce energy costs, reduce noise levels, and eliminate harmful dead end pressures. Other air knives typically entrain surrounding air at a ratio of 30:1 or less.

EXAIR offers the Super Air Knife with materials of construction of aluminum, Types 303 and 316 Stainless Steel, and PVDF to cover a wide variety of application temperatures and environments. Other materials may be possible, pending review by our Product Design Engineers. The Super Air Knives are offered as the knife only, as part of a full kit, which also includes a shim set, auto drain filter separator, and pressure regulator.  The Super Air Knife can be fitted with Plumbing Kits and/or Electronic Flow Control making installation easier and help to save on air usage.

If you have questions about Super Air Knives, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Super Air Amplifiers – Adjustability for Blowoff, Drying, Cooling, Circulation and Ventilation

The Super Air Amplifier is a powerful, efficient, and quiet air mover. Applications currently in place include blowoff, drying, cooling, circulation and ventilation. Sizes from 3/4″ to 8″ are available to best match the air volume that is necessary to achieve the process goals. There are a couple of ways to change the performance of the Super Air Amplifier if either a small or large change to the output flow is required.AirAmplifiers

The chart below shows the Total Output Flow for each of the 6 models. As an example, the Model 120021 or 121021, when operated at 60 PSIG of compressed air supply, will have a total output flow of 120 SCFM. These same devices when operated at 80 PSIG will have a total flow of 146 SCFM. By simply using a pressure regulation device on the compressed air supply, the output performance can be tuned to match the desired outcome.

Capture

For those applications where much greater flow and/or force is needed, the option of installing a thicker shim is available.  The Super Air Amplifiers are supplied with a 0.003″ shim installed (the 8″ model 120028, has a 0.009″ shim as standard) and can be fitted with shims of thicknesses of 0.006″ or 0.009″ (the 8″ model has an optional 0.015″ shim.) Installation of a thicker shim increases the slotted air gap, allowing for a greater amount of controlled air flow.  As a general rule, doubling the shim thickness will double the air flow rates.

Super Air Amplifier Shims
Patented* Shim Design for Super Air Amplifiers

The Super Air Amplifier design provides for a constant, high velocity outlet flow across the entire cross sectional area,.  The balanced outlet flow minimizes wind shear to produce sound levels that are typically three times quieter than other air movers. By regulating the compressed air supply pressure and use of the optional shims, adjustability and flexibility of the unit is wide ranging and sure to meet your process needs.

If you have questions regarding the Super Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

*Patent #5402938

Air Amplifiers – What is an Amplification Ratio?

On Friday my colleague, Russ, blogged about the Super Air Amplifier (see that BLOG here, including a video demo)  In discussing the Air Amplifiers, the topic of amplification was mentioned. Today, I’d like to expand a bit further the amplification aspect of the Air Amplifier performance.

As the name of the device implies, the compressed air used by the Air Amplifier is added to, and thus ‘amplified’, the total output flow of the unit. Depending on the size and type of Air Amplifier, the amplification ratio starts at 12:1 and goes up to 25:1, with the ratio being the output flow to the compressed air usage.

AirAmplifiers.jpg
Super Air Amplifier and Adjustable Air Amplifier

EXAIR offers (2) types- the Super Air Amplifier and the Adjustable Air Amplifier.  The Super Air Amplifier uses a patented shim technology to maintain a precise gap, which controls the compressed air flow and expansion through the unit.  As the expanded air flows along the Coanda profile, a low pressure area is created at the center which induces a high volume flow of surrounding air into the primary air-stream.  The combined flow of primary and surrounding air exhausts from the Air Amplifier in a high volume, high velocity flow.  The larger diameter units have a greater cross sectional area with larger low pressure areas, resulting in greater amplification ratios.

The Below table shows the amplification ratios.

SuperAirAmplifierPerformance

The Adjustable Air Amplifier does not use a shim, but rather has an infinitely adjustable gap, allowing for fine adjustment of performance.  Force and flow is changed by turning the exhaust end to adjust the gap, and is then locked into place. The method of the amplification is the same as for the Super Air Amplifier, and the amplification ratios are similar and shown below.

AdjustableAirAmplifierPerformance

The Super Air Amplifiers and Adjustable Air Amplifiers are ideal for use in applications and processes that require cooling, drying and/or cleaning of parts, or the ventilation of confined areas or weld smoke or the exhausting of tank fumes.

If you have questions regarding the Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB