Finding & Fixing Leaks: The Benefits of Creating a Leak Detection Program

Leaks in a compressed air system can be a substantial source of wasted energy. A facility that hasn’t maintained their compressed air system will likely have a leak rate around 20-30% of the total air production.  But with a leak detection plan you can reduce air leaks to less than 10% of the compressor output.

uhd

Along with the energy waste, leaks will contribute to higher operating cost.  Leaks cause a drop in system pressure, which can make air tools operate poorly, harming production cost and time. In addition, by forcing the equipment to cycle more often, leaks shorten the life of almost all system equipment, including the compressor. Increased running time can also lead to added maintenance and increased downtime. Finally, leaks can lead to adding unnecessary compressor volume.

Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, Like EXAIR Ultrasonic Leak Detector (ULD). This unit can recognize the high frequency hissing sounds associated with air leaks. A person using the ULD only needs to point it in the direction of the suspected leak. When a leak is present, an audible tone can be heard with the use of the head phones, and the LED display will light.  Testing various unions, pipes, valves and fittings of a complete system can be done quickly and effectively at distances up to 20’ away!

uhd kk

uhd e

The advantages of ultrasonic leak detection include flexibility, speed, ease of use, the ability to test the system while machines are running, and the ability to find a wide variety of leaks. They involve very little training, operators often become competent after 10 minutes of training.

Due to the nature of ultrasound, it is directional in transmission. For this reason, the signal is loudest at its source. By scanning around a test area, it is possible to very quickly target in on a leak site and pin point its exact location. For this reason, ultrasonic leak detection is not only fast, it is also very accurate.

An active leak prevention program will embrace the following components: identification, tracking, repair, verification, and employee participation. All facilities with a compressed air system should establish an aggressive leak reduction program. A team involving managerial representatives from production should be formed to carry out this program.

A leak prevention program should be part of an overall program intended to improve the performance of compressed air systems. Once the leaks are found and repaired, the system should be started from the beginning until all leaks are addressed.

A good compressed air system leak repair program is very important in maintaining the efficiency, reliability, stability and cost effectiveness of any compressed air system.

kkkk

“First a Plant Engineer or Maintenance Supervisor must realize that leak repair is a journey, not a destination. An ongoing compressed air leak monitoring and repair program should be in place in any plant that has a compressed air system.” Explains Paul Shaw, a General Manager for Scales Industrial Technologies’ Air Compressor Division, and an Advanced CAC Instructor, “Leak identification and remediation with a high quality repair can lead to substantial energy savings that typically has a very rapid payback, usually a year or less. In the hundreds of leak audits and repairs that we have done we’ve found that the quality of the repair is critical to ensuring the customer receive the most value for his investment and that the leak remains repaired for as long as possible. From there, constantly monitoring for compressed air leaks and repairing them as they occur can help the plant continue to reap the energy benefits.”

Above is an excerpt from “Best Practices for Compressed Air Systems”, Appendix 4.E.1.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

About Rotary Scroll Compressors

The Rotary Scroll compressor is a popular style compressor and is used primarily for air conditioning refrigerant systems.  Recently, since it is very efficient, quiet and reliable it has been adopted by industrial air compressor manufacturer’s to expand their product offering for their smaller, high-efficiency product line.

They operate on the principle of two intermeshing spirals or scrolls with one being stationary while the other rotates or orbits in relation to it.  They are mounted with 180° phase displacement between them which forms air pockets having different volumes.  Air enters through the inlet port located in the rotating/orbiting scroll which fills the chambers and as is moved along and compressed along the scroll surfaces.

Some of the key advantages of a Rotary Scroll Compressor are:

  • Pulsation free delivery due to the continuous flow from the suction port to the outlet port.
  • No metal to metal contact thereby eliminating the need for lubrication
  • Low noise levels
  • Fewer moving parts means less maintenance
  • Energy Efficient
  • Air cooled

The largest disadvantage is they are available in a limited range of sizes and the largest SCFM outputs are around 100 SCFM.

This is exactly where EXAIR shines, we offer 15 product lines of highly efficient & quiet point of use compressed air products and accessories to compliment their limited output volume of air.  All EXAIR products are designed to use compressed air efficiently and quietly, many of which reduce the demand on your air compressor which will help control utility costs and possibly delay the need to add additional compressed air capacity.

As an example, EXAIR’s Super Air Knives deliver exceptional efficiency by entraining ambient air at ratios of up to 40:1 and they are able to deliver an even laminar flow of air ranging from a gentle breeze to exceptionally hard-hitting force.

Super Air Knife
EXAIR’s Super Air Knife entrains ambient air at a 40:1 ratio!

EXAIR’s Super Air Amplifiers are able to entrain ambient air at ratio’s up to 25:1.  The model 120024 – 4″ Super Air Amplifier developes output volumes up to 2,190 SCFM while consuming only 29.2 SCFM of compressed air @ 80 PSI which can easily be operated on a 100 SCFM output compressor.

Super Air Amplifier
EXAIR Air Amplifiers use a small amount of compressed air to create a tremendous amount of air flow.

For your blow off needs EXAIR’s Super Air Nozzle lineup has an offering that will fit nearly any need or application you may have.  Nozzles are available in sizes from M4 x 0.5 to  1 1/4 NPT and forces that range from 2 ounces of force up to 23 Lbs at 12″ from the discharge.  We offer sixty two nozzles that could all be operated easily from the limited discharge or a rotary scroll compressor.

nozzlescascadeosha
Family of Nozzles

If you need to reduce your compressed air consumption or you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

Video Blog: How To Calculate Air Consumption At A Pressure Other Than Published Values

The below video shows how to calculate the air consumption when operating at any pressure.

If you want to discuss efficient compressed air use or any of EXAIR’s engineered compressed air products, give us a call or email.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

How to Calculate SCFM (Volume) When Operating at Any Pressure

If you need to operate at a different pressure because you require less or more force or simply operate at a different line pressure, this formula will allow you to determine the volume of air being consumed by any device.

Volume Formula

Using the EXAIR 1100 Super Air Nozzle as our example:

1100

Lets first consider the volume of the 1100 Super Air Nozzle at a higher than published pressure.  As shown in the formula and calculations it is simply the ratio of gauge pressure + atmospheric divided by the published pressure + atmospheric and then multiply the dividend by the published volume.  So as we do the math we solve for 17.69 SCFM @ 105 PSIG from a device that was  shown consume 14 SCFM @ 80 PSIG.

higher

Now lets consider the volume at a lower than published pressure.  As shown it is simply the ratio of gauge pressure + atmospheric divided by the published pressure + atmospheric and then multiply the dividend by the published volume.  So as we do the math we solve for 11.04 SCFM @ 60 PSIG from a device that was shown to consume 14 SCFM @ 80 PSIG.

lower

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  Experience the EXAIR difference first hand and receive the great customer service, products and attention you deserve!  We would enjoy hearing from you.

Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook