When Sizing Long Pipe Runs, Make Sure to Add in the Pipe Fittings

IM on Compressed Air Line Sizes for Cabinet Cooler
Installation and Maintenance information on Compressed Air Line Sizes for Cabinet Cooler

 

EXAIR uses this statement in their installation manuals to help determine the correct size pipe for our products. The above statement came from our large NEMA 4-4X Cabinet Cooler installation manual.  There are some important factors to consider when using this guideline to ensure proper air flow.

A customer installed a model 4840 EXAIR NEMA 4 Cabinet Cooler, and he was not getting the proper cooling. In diagnosing compressed air issues, one of the first things that we ask our customers is “What is the air pressure at the device?”  He attached a pressure gauge at the Cabinet Cooler, and he was reading 45 psig; much too low for proper cooling.  He sent me a photo of the setup and some details of the compressed air system supplying the Cabinet Cooler.  We needed to find the restriction to properly supply enough compressed air to the unit.

Westinghouse Cabinet Cooler

In the details that he sent, they ran 43 feet of 1/2” copper compressed air tubing from the header to the Cabinet Cooler. He mentioned that they had one angled Safety Valve at the beginning and twelve elbows in that run.  (Apparently they had to get around and through things to reach the location of the Cabinet Cooler).  They did have a pressure gauge in the header that read 105 psig.

The first thing that I noticed was that they were using compressed air tubing instead of compressed air pipe or hose. Tubing is measured by the outer diameter while the compressed air hoses are measured by the inner diameter.  So, in the statement above when it references ½” I.D. hose, ½” tubing will have a much smaller I.D., and in this case, it had a 3/8” I.D.  With this smaller flow area, this will increase the restriction.  In calculating the pressure drop in 43 feet of ½” tubing, it would be roughly a 27 psi drop at 40 SCFM.  If they have 105 psig at the header, they should be reading 78 psig at the Cabinet Cooler.  Being that they were only reading 45 psig, where is the rest of the restriction?

The answer to that question is in the fittings. When you have pipe fittings like elbows, tees, reducers, etc., they will add pressure drop to your system as the compressed air travels through them.  There is a method to calculate compressed air runs with pipe fittings in terms of Effective Length.  Effective length is a way to estimate the same pressure drop through a similar length of pipe to a pipe fitting.  This can be very important when running compressed air lines for EXAIR products.  Once we have the effective length of a pipe, then we can use the requirements in the installation manual for sizing compressed air lines properly.  The chart below shows the equivalent lengths by fitting category.

Equivalent Length

In the application above, the customer used 43 feet of 3/8” I.D. line, 12 pcs. of 3/8” regular 90 deg. elbows, and one 3/8” angled valve. The equivalent length of pipe can be calculated as 43 feet + 12 * 3.1 feet + 1 * 15 feet = 95.2 feet.  As you can see, with all the fittings, the equivalent length of pipe extended from 43 feet to 95.2 feet.  If we recalculate the pressure loss for 93.2 feet of ½” tubing, then we get a pressure loss of 58 psi at 40 SCFM.  From the header, this will equate to a pressure of 47 psig at the EXAIR Cabinet Cooler.  This is very close to the reading that he measured.  He asked me to recommend the proper size pipe, and by using the equivalent length and the installation manual, I suggest that he should use either ½” NPT pipe or 5/8” O.D. copper tubing for a 95 feet run.  This would only create a 5 psi pressure drop which would properly supply the model 4840 Cabinet Cooler with 40 SCFM.

If you are wanting to use tubing in your compressed air lines, you will need to use the inner diameter for sizing. Also, if you have many fittings, you can add them to your pipe lengths to get an equivalent overall length.  With the above methods to correctly size the compressed air lines, your EXAIR products will be able to work effectively and properly.

John Ball
Application Engineer
Email:
johnball@exair.com
Twitter: @EXAIR_jb

 

Video Blog: Super Air Knife with Plumbing Kit Installed

 

This short video features our new Stainless Steel Plumbing kits. Ordering a Super Air Knife with the Plumbing Kit installed, provides the best performance and makes for an easy installation.

 

 

Please contact an application engineer for assistance @ 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Plumbing Kits Simplify Air Knife Installation

Incorrect plumbing is an all too common problem we deal with on a regular basis here at EXAIR. Many times we receive calls from a customer saying that their Air Knife isn’t producing a high velocity or they are seeing an uneven airflow. In fact we have written many blogs touching on this subject, such as the one I posted a few weeks ago titled, Proper Air Supply & Installation Provides Best Performance or the one titled Typical Compressed Air Plumbing Mistakes by our International Application Engineer John Ball.

Using undersized supply lines can cause excessive pressure drops because they aren’t able to carry the volume of air necessary to properly supply the compressed air device. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle. Using restrictive fittings, like quick disconnects, will also contribute to this effect as the ID of the fitting is much smaller than the NPT connection size. Example: Say you are seeing 80-100 PSIG upstream of  an air knife at the pressure gauge, by the time the air passes through a quick disconnect or small ID line and fitting, the actual pressure being delivered to the unit will be much less, possibly as low as 20-30 PSIG depending on the installation. One way to measure the actual pressure being delivered to the air knife would be to install a pipe tee with a pressure gauge right at the inlet of the air knife.

All of our products are shipped with an installation guide referencing the proper recommended pipe sizes for various lengths of supply pipe. When dealing with our Air Knives, since we offer lengths up to 108″, you need to plumb air to multiple inlets for knives that are 24″ and larger. To simplify the installation process, we offer our Air Knife Plumbing Kits. The Plumbing Kits include properly sized nitrile/PVC compressed air hose and brass fittings for our aluminum units. In addition, we now offer 316ss pipe and fittings for our stainless steel and PVDF Super Air Knives for applications requiring superior corrosion resistance. Using the plumbing kits eliminates pressure loss and the need for searching for the proper fittings or possibly using incorrect pipe size.

Aluminum Plumbing Kit
Plumbing Kit for aluminum Super Air Knife

 

SS Plumbing Kit
Plumbing Kit for Stainless Steel and PVDF Super Air Knife

 

If you think you are experiencing less than expected performance from one of our products, please give us a call so we can help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

.

Typical Compressed Air Plumbing Mistakes

As a manufacturer of Intelligent Compressed Air Products, we like to address one of the most common problems with installation, proper plumbing.  A picture is worth a 1,000 words, and knowledge is power.  I will show both to help eliminate any pitfalls when installing our products.

A customer purchased a model 110072 Super Air Knife.  It is a powerful and efficient air knife that is 72 inches (1.8 meter) long.  He mounted it across his sheet to blow debris off from the surface of his product.  After installing the Super Air Knife, he was having issues in getting a strong even force along the entire knife.  He would only get compressed air blowing on the ends of the Super Air Knife.  The center did not have anything coming out.  He needed our help to solve.  In detailing my forensics, I asked him for pictures of his installation as I went over some basic questions.  Here is what we found:

Question 1: What is the pressure at the entrance of the Super Air Knife?

Answer 1: 95 psig (6.5 bar)

Picture: The gage reading is at the regulator.

Solution: There should also be a pressure gage right at the entrance of the Super Air Knife. It helps to define any issues in the system by comparing line pressure at the regulator to inlet pressure at the Super Air Knife.  This customer would see a very low air pressure at the Super Air Knife caused by all the restrictions (reference below).

Issue 1
Issue 1

Question 2: What size is your compressed air line that is supplying the Super Air Knife?

Answer 2: 1 ½” NPT pipe. (From the installation manual, this is the correct size pipe to supply the air required for the Super Air Knife when it is 150′ from the compressor.)

Picture: The compressed air line is reduced from 1 ½” NPT to ¼” NPT pipe.  Yes, there is a 1-1/2″ pipe bringing air close to the Super Air Knife, but it is actually a 1/4″ NPT pipe fitting on a small coiled hose that is supplying the knife. Due to a lack of air vlume, the pressure drop is huge and it is performance of the Super Air Knife.

Solution: They will need to run 1 ½” NPT pipe to the Super Air Knife.  Then uses Pipe Tees and/or Crosses to branch into the feed lines to the Super Air Knife.

Issue 2
Issue 2

Question 3: Do you have any restrictions in the compressed air line?

Answer 3: I don’t know.

Picture: We have multiple issues.

  1. The ¼” NPT compressed air line is too small (huge restriction).
  2. The red filter in photo above is too small (huge restriction). The black filter and black regulator are sized correctly to supply the Super Air Knife, but the red filter is too small causing a large pressure drop.
  3. One of the biggest culprits in choking compressed air flow to a pneumatic product are Quick Disconnect fittings. The picture below is a quick disconnect on the inlet port to the Super Air Knife (huge restriction)
  4. The yellow compressed air line is also way too small. I only bring this up because there is a difference in diameters from Schedule 40 pipe to air hose and tubing. Make sure that the inner diameters match or are larger than the recommended pipe size.

Solution: In order to have the Super Air Knife properly working, we have to make sure that it can get enough compressed air.  I had the customer remove all the small fittings, yellow tubing, quick disconnects, and the small filter.

Issue 3
Issue 3

Question 4: How many ports on the Super Air Knife are you using to supply the compressed air?

Answer 4: 2 ports.

Picture: With this length of the Super Air Knife, it requires 4 ports to supply compressed air (reference the Installation Manual). They should be evenly spaced from one end of the Super Air Knife to the other.  This is another reason that he only had compressed air coming out at the ends of the Super Air Knife.

Solution: EXAIR offers a Plumbing Kit to make sure the entire knife is supplied correctly.  The plumbing kit contains all the proper size fittings and hose to plumb the correct number of Air Knife inlets. These kits prevent you from hunting for the right fittings and from using undersized parts, which will not be able to supply the knife with enough air.

Model 9078 PKI Kit
Model 9078 Plumbing Kit

With proper installation at the beginning, it will save you time and headaches, and you will be able to utilize the EXAIR products properly. If you have additional questions about your setup, you can contact an Application Engineer at EXAIR at 1-800-903-9247.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

When Is A Half Inch Not A Half Inch? When It’s Half Inch Pipe, Of Course!

People have been using pipe to transport fluids for thousands of years. Archeologists have discovered evidence that the Chinese were using pipes made of reeds for irrigation as early as 2,000 B.C. Lead pipe began to supplement, and eventually replace, the Roman aqueducts in the first century A.D. In the early 1800’s, someone got the idea to use gas burning lamps to light city streets, and, over the next few years, men like James Russell and Cornelius Whitehouse came up with better and better methods of mass producing metal tubing and pipes.

Over the course of the 19th Century and the Industrial Revolution, iron pipe came to be manufactured in standard sizes, which were called out by the inside diameter of the pipe. ¼” pipe had a ¼” ID, ½” pipe had a ½” ID, ¾” pipe had a ¾” ID, etc. Iron pipe could be found in any facility that needed to move a gas or a liquid: factories, power generating stations, chemical plants…you name it.

As engineers and metallurgists came up with new ways to produce pipe, technological advances led to the ability to decrease the wall thickness and still maintain high structural integrity. This was a HUGE improvement: not only could piping manufacturers make more pipe with less material, bringing down the cost, it was also lighter in weight, making it easier to transport, handle, and install. Because of the massive amount of existing piping already in place, it made sense to keep the outside diameter the same, so that all the fittings would match when these facilities went to replace worn out or damaged pipe. So, the inside diameter was increased. That’s why, today, ¼” pipe has a 0.36” ID, ½” pipe has a 0.62” ID, ¾” pipe has a 0.82” ID, etc. Lower cost, lighter weight, more flow capacity…it’s all good, right?

Well, yes, but sometimes, it can lead to confusion, especially when we’re talking about properly sized compressed air lines. See, we know how much compressed air will flow through certain sized pipes of specific lengths. The Installation & Operation Instructions for all of our products contain recommended infeed pipe sizes to ensure sufficient air flow. Keep in mind, these are Schedule 40 pipe sizes, and should not be confused with hose or tubing sizes, which usually report the outside diameter but could also report the inside diameter, depending on the source.

Consider this example: you want to install an 6” Super Air Knife in a location 10 feet from the compressed air header. Following the “Infeed Pipe Size Length of Run” column (10’) down, we see that this will require a ¼” SCH40 pipe, which has an ID of 0.36”. If you want to use hose or tubing to supply it, that’s fine – it’ll have to have a 3/8” ID, though, or you’re going to risk “starving” the Air Knife for air. If you choose a 3/8″ tube remember that dimension is usually referring to the outside diameter of the tube and automatically means your inside diameter is smaller than we would recommend.

SuperAirKnifeInfeedPipe

If you’d like to learn more, it’s actually been a pretty popular blog topic as well:

The Importance of Proper Compressed Air Supply Lines

Video Blog: Proper Supply Plumbing For Compressed Air Products

Top 6 Compressed Air Plumbing Mistakes and How to Avoid Them

…and that’s just to name a few.  If you have specific questions about how to properly supply your EXAIR product(s), you can give us a call – we’re eager to help!

Russ Bowman
Application Engineer
EXAIR Corporation
(513)671-3322 local
(800)923-9247 toll free
(513)671-3363 fax
Web: www.exair.com
Twitter: twitter.com/exair_rb
Facebook: http://www.facebook.com/exair