## Estimating the Cost of Compressed Air Systems Leaks

Leaks in a compressed air system can waste thousands of dollars of electricity per year. In fact, in many plants, the leakage can account for up to 30% of the total operational cost of the compressor. Some of the most common areas where you might find a leak would be at connection joints like valves, unions, couplings, fittings, etc. This not only wastes energy but it can also cause the compressed air system to lose pressure which reduces the end use product’s performance, like an air operated actuator being unable to close a valve, for instance.

One way to estimate how much leakage a system has is to turn off all of the point-of-use devices / pneumatic tools, then start the compressor and record the average time it takes for the compressor to cycle on and off. The total percentage of leakage can be calculated as follows:

Percentage = [(T x 100) / (T + t)]

T = on time in minutes
t = off time in minutes

The percentage of compressor capacity that is lost should be under 10% for a system that is properly maintained.

Another method to calculate the amount of leakage in a system is by using a downstream pressure gauge from a receiver tank. You would need to know the total volume in the system at this point though to accurately estimate the leakage. As the compressor starts to cycle on,  you want to allow the system to reach the nominal operating pressure for the process and record the length of time it takes for the pressure to drop to a lower level. As stated above, any leakage more than 10% shows that improvements could be made in the system.

Formula:

(V x (P1 – P2) / T x 14.7) x 1.25

V= Volumetric Flow (CFM)
P1 = Operating Pressure (PSIG)
P2 =  Lower Pressure (PSIG)
T = Time (minutes)
14.7 = Atmospheric Pressure
1.25 = correction factor to figure the amount of leakage as the pressure drops in the system

Now that we’ve covered how to estimate the amount of leakage there might be in a system, we can now look at the cost of a leak. For this example, we will consider a leak point to be the equivalent to a 1/16″ diameter hole.

A 1/16″ diameter hole is going to flow close to 3.8 SCFM @ 80 PSIG supply pressure. An industrial sized air compressor uses about 1 horsepower of energy to make roughly 4 SCFM of compressed air. Many plants know their actual energy costs but if not, a reasonable average to use is \$0.25/1,000 SCF generated.

Calculation :

3.8 SCFM (consumed) x 60 minutes x \$ 0.25 divided by 1,000 SCF

= \$ 0.06 per hour
= \$ 0.48 per 8 hour work shift
= \$ 2.40 per 5-day work week
= \$ 124.80 per year (based on 52 weeks)

As you can see, that’s a lot of money and energy being lost to just one small leak. More than likely, this wouldn’t be the only leak in the system so it wouldn’t take long for the cost to quickly add up for several leaks of this size.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

## Spending Some Extra Time Can Save Money (and Stress)

If you are familiar with our blog, you will see where I have recently written about coaching my oldest son’s pee wee football team this year. Things slowed down this past week as the team had a bye so that meant a “free” weekend or as my wife called it – “a chance to do some of the things you have put off over the last few months”. On the top of the list was painting our bedroom.

My oldest son loves to help with projects and I never want to discourage him so when he asked if he could help, of course the answer was “yes”. Not only did this mean I had to spend some extra \$ to get some supplies “for kids”, as he put it, I also needed to spend some time explaining what he needed to do. As we started to prep the walls, I went ahead and cut in around the ceiling, doors, baseboard and trim. My plan was that I would paint the top portion of the wall while he worked on the lower. I set up his little roller and watched him paint about a 4 foot wide section and much to my surprise he did a pretty good job. My wife needed a hand with our infant son, so I felt somewhat confident leaving our oldest unsupervised for a few minutes. BIG mistake!

When I got back upstairs, he had painted over the baseboard, trim and managed to drip paint all over the hardwood floors. When I asked him what happened, he responded with “well dad, I wanted to hurry because it’s really nice outside and I NEED to go out and play! Besides you said you were going to have to clean up anyway”. Go outside son, PLEASE, go outside and play. Now not only did I have to clean up the paint, but I also had to spend more money on new baseboard and trim because there is no way I was going to be able to salvage his masterpiece. Maybe I should have spent a little while longer explaining the process? Regardless, my next few moments of “free” time have all been filled.

Taking the time to review your compressed air system can be very important to your company’s efficiency. In many industrial settings/facilities, the compressed air system is an opportunity for savings and efficiency. In fact, the largest motor in a plant is often on the compressor itself. Leaving a small compressed air leak unattended or using an inefficient blowoff for a long period of time can result in very expensive electrical waste. This excessive expense and waste can negatively affect a company’s profit margin as well as reduce performance and increase production costs.

Luckily, EXAIR can help optimize your compressed air system by using our 6 Simple Steps:

Measure the compressed air usage using a flow meter. Once you have identified your usage, you can work on finding a more efficient alternative.

Use a leak detector to locate expensive, wasteful leaks.

Replace the inefficient sources with a more efficient engineered solution

Operate the compressed air only when it’s needed. Our Electronic Flow Control (EFC) is an ideal choice to use for on/off service or to set up on a timed basis.

Install a Receiver Tank to provide additional compressed air supply for applications requiring large amounts of compressed air.

Control the supply pressure to the device using a regulator. Sometimes operating at lower pressure can still be effective and can reduce the overall energy cost of the operation.

While I can’t recommend my son to lend (2) little helping hands, I might be able to provide some assistance with optimizing your compressed air system. Give us a call at 800-903-9247 to see how we can help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Painting Supplies image courtesy of TedsBlog via Creative Commons License

## Lost In The Din? Not With An Ultrasonic Leak Detector!

Have you ever found yourself in a noisy environment, trying to hear what someone is saying to you? They could speak up, but sometimes that’s not enough. You might find yourself cupping your hand to your ear…this does two things:

*It blocks a lot of the noise from the environment.  This could also be called “filtering” – more on that in a minute.
*It focuses the sound of the speaker’s voice towards your ear.

Now, this isn’t a perfect solution, but you’ll likely have much better luck with this in a busy restaurant than, say, at a rock concert. Especially if it’s The Who…those guys are LOUD (vintage loud). If you’re at one of their concerts, whatever your friend has to say can probably wait.

You know what else can be loud?  Industrial workplaces.  Heavy machinery, compressed air leaks, cranes, forklifts, power tools, cranky supervisors/personnel…there are lots of unpleasant but necessary (mostly) sources of sound and noise, right here, where we work.

In the middle of all this, your supervisor might just task you with finding – and eliminating – compressed air leaks…like the person I talked to on the phone this morning.  This is where our Ultrasonic Leak Detector comes in: in places with high noise levels, it could be difficult (if not downright impossible) to hear air leaks.

Most of that noise from the machinery, cranes, etc., is in the “audible” range, which simply means that it’s of a frequency that our ears can pick up.  In a quiet room, you could likely hear an air leak…all but the very smallest ones will make a certain amount of noise…but when a compressed fluid makes its way out of a tortuous path to atmospheric pressure, gets turbulent, and creates an ultrasonic sound it is a frequency that our ears CAN’T pick up on.

Not only does the Ultrasonic Leak Detector pick up on this ultrasonic sound, it can also block (or “filter”) the audible sound out.  It comes with a parabola and a tubular extension so you can hone right in on the area, and then the exact location, of the leak.

If you’d like to find out more about compressed air leak detection, how much you might be able to save by fixing leaks, or how this could make your supervisor a bit less cranky (no guarantees on that last one,) give us a call.

Russ Bowman
Application Engineer
Find us on the Web