Social Media Finds Lost Dogs, Helps Save Compressed Air

Lost Dog – Her name is Molly

 

The versatility of  social media is one of its greatest assets. If you have an interest in something you can most likely discover others with the same interests on one of the social media platforms. From Facebook, Twitter, blog posts, LinkedIn, Google+ and YouTube to Pinterest, Flickr, Instagram and Reddit – you will be hard pressed to NOT find something you are looking for.

The other day, we lost our dog, and it was a traumatic experience for us.  She saw some deer in the backyard; and in her crazed state, she knocked down the pet gate.  Molly went after the deer into the woods behind our place.  Being that it was raining and approaching the evening hour, I mentioned that when she gets done hunting, she will come back home.  We placed her bed and food onto the porch for when she returned.

The next day, Molly was not on the porch.  We were disheartened.  Being that I am a bit “old” school, we decided to print some flyers with Molly’s picture.  After I returned from work, we started in my neighborhood and worked our way out.  We drove to all the neighbors to see if they had seen her, and we stapled the flyers to telephone poles and community boards.  We were going at it for hours, and it seemed to be getting hopeless.  (Now, I would not have written this blog if it had a sad ending.)

As we continued to make our journey, I went up to a house and knocked on their door.  A gentleman answered, and I gave him the story of how our dog got out of her pen.  As I was still speaking, my significant other rolled down her window and shouted to me that she found Molly.  I was a little confused as I headed back to the vehicle.  She told me that a picture of Molly was on her Facebook.  (Of course Molly was making herself right at home as the picture showed her laying on a couch).  We were extremely happy that we had finally found her.  Apparently, a lady that found Molly posted her picture, and tagged her friends.  Her friends then sent it out to their friends, and before you knew it, we had her picture on Facebook.  With a friend request, we were able to receive her location and start our way to pick her up.  Believe it or not, Molly was over 2 miles away from our house.

Being curious, I looked at the timeline of the post.  I noticed that she posted the picture at 6:44 p.m., and we were looking at Molly at 7:28 p.m. that same day.  This was definitely much quicker and easier than hanging flyers and knocking on doors.  I was amazed at how fast and simple that this social networking reunited us with Molly.

This got me thinking about social media.  Facebook is the largest social network with almost 2 billion users throughout the world.  In looking at the nature of Facebook, it is more than reuniting with friends or finding lost dogs.  It also unites companies.  EXAIR has a Facebook page in which we post videos, photos, and blogs of compressed air solutions.  We can show you how to save money by using less compressed air with our products and how to solve every day problems with your compressed air system.  We would love to have you as a friend at www.facebook.com/exair.  We may not be able to find your dog, but we sure can share some stories, solve compressed air problems, and become good friends.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

 

 

Replacing Unsafe Open Pipes with High Pressure Air Nozzles

Open pipes present unsafe working conditions and continuous pressure drops in compressed air systems

Let’s talk for a minute about pressure drops. Normally when the topic of pressure drops is raised, it comes in a context related to proper plumbing and volume supply.  (If there are significant pressure drops within a compressed air system, especially those which reduce volume flow, problems will arise with compressed air driven devices.)

But, there is another important aspect of pressure drops which relates to open pipe blow-off, a common homemade remedy for blow-off applications. This aspect has to do with the available compressed air pressure at the exhausting point from the pipe or nozzle.  In the case of an open pipe, it requires so much compressed air volume that, there can be a continuous pressure drop from the compressor to the open pipe.  However, when a nozzle is installed onto a compressed air pipe, there is a restriction to the flow and the entire pressure drop takes place across the nozzle.

What this means for the blow-off solution is a higher velocity blow-off and a more powerful force from the airflow, with less compressed air consumption.

To think of it another way, imagine the flow of water from your garden hose. If the hose is open-ended and the water is fully on, the flow will be high and the force will be low.  But, when you install a nozzle onto the end of the hose the flow reduces and the force increases.  This is because the pressure drop in the system is taking place across the nozzle rather than the entire system.

This type of a scenario was taking place in the image shown at the top of this blog. The plastic lines connected to the aluminum manifold were fully open on the end, providing a continuous pressure drop and poor blow-off performance.  This, coupled with the maximum operating pressure of similar types of hose being 35 PSI, led to a poor performance in this application.

The solution for this customer was to replace these open pipe blow-offs with EXAIR model 1126 Flat Super Air Nozzles and 12″ Stay Set Hoses, model 9262. The flat airflow of the 1126 Super Air Nozzles provide a highly efficient and forceful blow-off, and the Stay Set Hoses allow for articulation of the nozzles into any position needed.

By replacing these open pipes this customer saved compressed air, added safety (open pipes present an operating hazard per OSHA Standard CFR 1910.242(b)), and improved the performance of their operation.

If you have a similar application or would like to speak with someone about increasing the efficiency of your compressed air applications, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Getting A Little More Vacuum and Flow

Last week, a customer called and indicated that he was a long time user of the model 6013 High Velocity Air Jet.

6013

Model 6013 High Velocity Air Jet

The customer was using the Air Jet to remove light trim scrap from a manufacturing process. The Air Jets utilize the Coanda effect (wall attachment of a high velocity fluid) to produce air motion in their surroundings.  A small amount of compressed air to the Air Jet is throttled through an internal ring nozzle at speeds above sonic velocity.  In the above image, this produces a vacuum at the left side, pulling in large volumes of surrounding air. By utilizing this vacuum pull and ducting the right side exhaust, air and scrap stream to a collection area. The customer assembled a small, efficient, and inexpensive scrap removal system.

The reason the customer had called in was there were some recent changes to the manufacturing process and needed a bit more vacuum force and flow to handle larger scrap and longer travel. We explored using a larger shim, but they were already using the largest size (0.015″.) We talked about the other products that EXAIR offers (Air Amplifiers, Line Vacs) that are used for scrap removal and conveyance.  But with any change, there are usually other modifications and approvals that must be dealt with in order to proceed. So we hit upon the Adjustable Air Jet, which is an adjustable version of the model 6013.

6019

Model 6019 Adjustable Air Jet

The model 6019 Adjustable Air Jet utilizes an adjustable air gap in place of the fixed shim thickness.  This allows for greater air flow, which results in greater vacuum and conveyance distances. As is the case for many customers, we gathered some additional data to help this customer make a decision. We set up each of the units and tested them at maximum capabilities, and the model 6019 was shown to deliver upwards of 50% greater flow.  The customer felt certain this level of performance would handle what the changed process would require, and best of all, no modifications to any part of the set-up would be required, simply install the 6019 where the 6013 was currently placed.

The High Velocity Air Jet is also part of the model 1909 Blowoff Kit, and is also used in the model 8193 Ion Air Gun and model 8194 Ion Air Jet, for Static Elimination applications. Of course, each can be purchased as an individual item.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can make your process better, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

Video Blog: EXAIR Swivel Fittings

A brief video showcasing the full EXAIR Swivel fittings offering. Each of the 9 Swivel Fitting models offers a 25° from center line adjustment for a total of 50° full range of adjustment. The Swivel fittings are an ideal accessory for a variety of EXAIR products.  For more product details see our product page.  For any questions or fitment suggestions contact an Application Engineer.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Will It Spray?

Video showing the intended use of EXAIR Atomizing Nozzles, illustrated with a green spray pattern.

 

One of the common questions we receive with regards to our Atomizing Spray Nozzles, is whether they will spray a specific liquid.  Most of the time this is a simple answer, found by referencing the viscosity of the liquid and the viscosity range of the specific atomizing nozzle in question.  But, sometimes the viscosity of a fluid isn’t readily available and the best path forward is testing of the specific fluid or application.

Such was the case with the videos above and below.  This application was to spray a specific mixture comprised of catnip biomass onto materials as they pass along a conveyor.  There was no specific flow rate required, we simply needed to spray a specific width at a specific distance away from the product.

The video above shows the desired spray pattern from the nozzles, something with a wide angle and flatpattern, and the video below shows the most suitable solution we found in testing at EXAIR.

The suitable nozzle in this application was our model AD2010SS, an internal mix nozzle with deflected flat fan spraying pattern and a patented technology to prevent liquid flow after compressed air to the nozzle is turned off.  This nozzle provided the right solution for this application, and shipped from stock on the same day we received the order.

Fast forward a few weeks and this same application found benefit from an Electronic Flow Controller (EFC) model 9057.  The EFC allows for sensor-based control of compressed air flow, and thereby control of liquid flow to the AD2010SS nozzles.  This prevents operation of the nozzles when there is no need to spray the liquid.

The discussion, testing, and implementation of this solution are an excellent example of the engineering support available behind EXAIR products.  We really do help our customers find solutions, and if there is an unknown in an application we’re willing to find the answers together.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Super Air Knives Used as a Non-Contact Barrier in a Non-Woven Application

An overseas customer manufactures a 2.2 meter wide non-woven material.  In one of their processes, the media would travel through a spray booth to apply a water-based surfactant.  The surfactant was atomized and blown onto the top and bottom of the material.  The spray booth was equipped with a fume hood to capture any excess mist.  The material would then travel out of the spray booth and into the oven to dry.

Area between Spray Booth and Oven

Area between Spray Booth and Oven

Because they were running at a speed of 160 m/min, a draft was being created as the media was exiting the spray booth.  This draft was strong enough to overcome the vacuum pressure from the fume collection system.  This would allow the excess mist to escape the spray booth.  It was then collecting on the surface of the oven and floor outside the containment area.  This created a safety issue as well as a large mess.

In looking at the problem area, the dimension of the opening of the spray booth was 2.65 meters by 300 mm.  To blow a good curtain of air to contain the mist, we needed to have a laminar flow to create that “wall”.  I recommended two pieces of a model 1102108 Super Air Knife Kits.  At 108” (or 2.74m) long, they are the longest Super Air Knives in the market.  With a steady flow of air along the entire 2.74 meter length, it can generate that curtain of air across the entire opening of the spray booth.  The laminar flow was key as they did not want to disturb the spraying nozzles inside the booth.

The Super Air Knife Kit also comes with a filter, a regulator, and a shim set.  With the included shim set, the force can be changed dramatically by using a different thickness of shim.  Since they did not need much force to keep the mist inside the spray booth, they opted to put a thinner shim inside the Super Air Knife.  This would reduce the amount of compressed air needed, and with a regulator, the customer could “dial” in the correct amount of force to create the proper air barrier.  The Super Air Knives were mounted above and below the material to blow directly across the opening of the spray booth.  Any fine mist that would come in contact with the air would be deflected back into the spray booth.  With the extra mist removed from the process, the fume extraction system could then perform its duties the way it was intended. With air being used to create that barrier, it did not disrupt the structure of the material or the surfactant on its surface.

Super Air Knife

Super Air Knife

If you require a non-contact barrier for your application, EXAIR Super Air Knives could be your solution.  For this customer, we were able keep the work place safe and mess-free.

 John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Offshore Pipe Welding Cooled with Series of EXAIR Super Air Nozzles

atoll_air-cooling-interpass-1

EXAIR model 1122 Flat Super Air Nozzles used to provide cooling blow off.

One of the services we provide to our customers, is assistance in selection of the most suitable product solution for their application.  For most applications we have solutions readily available from stock, though that wasn’t the case in the solution shown above.

atoll_air-cooling-interpass-6

This unique blow off solution cools welds on 450mm (18″) pipes.

This configuration of model 1122 Flat Super Air Nozzles is used to cool pipe welds in an application located off the coast of France.  Pipes with an OD of 450mm (~18”) are welded together, and in order for the welds to be of the highest quality, they must be cooled.  To cool the welds, this customer needed to blow ambient temperature air over the pipes.

atoll_air-cooling-interpass-9

Closeup of nozzles used in this application

Initially, we explored a Super Air Wipe solution.  A Super Air Wipe can provide a full 360° blow off for this pipe, but there was an aspect of the application which led to a better solution through nozzles; an irregularity in position of the pipe.

atoll_air-cooling-interpass-8

Another view of the 1122 Flat Super Air Nozzles

The diameter of the pipes in this application is relatively constant, but there is some fluctuation in position as the pipe is moved.  If using a Super Air Wipe, this could mean contact with a precision machined surface, resulting in a change to the performance of the unit.  But, what if we could find a way to allow the blow off solution to have some “flex”.

swivels

Flat Super Air Nozzles with swivels provide the unique solution needed for this application.

“Flex” in this solution is provided through the use of EXAIR model 9053 swivel fittings, shown above with red circles, each used to mount an 1122 Flat Super Air Nozzle (16 of each).  These allow for proper placement of the nozzles, and also for movement if anything should ever contact the blow off solution.

An additional benefit of the EXAIR 1122 nozzles used in this application, is the ability to exchange shims inside the nozzle to increase or decrease the amount of force delivered from the nozzle.

Understanding the critical requirements of the customer led to this semi-custom solution using EXAIR Super Air Nozzles.  If you‘d like to explore an EXAIR blow off solution for your application, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: