Video Blog: Split Ring Design of the Super Air Wipe Eases Installation

This video showcases just how easy it is to install a Super Air Wipe or a Standard Air Wipe onto an extrusion line.  The split ring design makes it possible to install or remove from the line without having to thread the product, all within a minute or less.

If you would like to discuss your application, or any point of use compressed air application, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Static Elimination for Hose, Pipe, Extrusion, Cable and Wire

EXAIR’s  Gen4 Super Ion Air Wipe provides a uniform 360 degree ionized air stream that clamps around a continuously moving part to eliminate static electricity and contaminants. It is ideal for removing dust, particulates and personnel shocks on pipe, cable, extruded shapes, hose, wire and more. This engineered product has undergone independent laboratory tests to certify it meets the rigorous safety, health and environmental standards of the USA, European Union and Canada that are required to attain the CE and UL marks. It is also RoHS compliant. New design features include a metal armored high voltage cable to protect against abrasion and cuts, a replaceable emitter point, integrated ground connection and electromagnetic shielding.

g4siaw_3mb

The Gen4 Super Ion Air Wipe uses a small amount of compressed air to entrain high volumes of ambient air. Two shockless ionizing points powered by our Gen4 UL Component Recognized 5kV Power Supply fills the air stream with static eliminating ions. That airflow impacts the surface of the material running through the air wipe and neutralizes the charge.

The Gen4 Super Ion Air Wipe, which compliments EXAIR’s complete line of Gen4 Static Eliminators, has an aluminum construction that is lightweight and easy to mount using the tapped holes provided. Two sizes include a 2 inch (51mm) diameter and a 4 inch (102mm). There are no moving parts to wear out. Visit EXAIR.com to see the entire Gen4 Static Eliminator product line and 1/2 inch through 11 inch Super Air Wipes for applications without static.

Purchase a Gen4 Super Ion Air Wipe through our online promotional before March 31st, 2019 and receive a fee AC Sensor.

absesqmaster_300sq

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

The Bernoulli Principle

What do baseball, airplanes, and your favorite singer have in common? If you guessed that it has something to do with the title of this blog, dear reader, you are correct.  We’ll unpack all that, but first, let’s talk about this Bernoulli guy:

Jacob Bernoulli was a prominent mathematician in the late 17th century.  We can blame calculus on him to some degree; he worked closely with Gottfried Wilhelm Leibniz who (despite vicious accusations of plagiarism from Isaac Newton) appears to have developed the same mathematical methods independently from the more famous Newton.  He also developed the mathematical constant e (base of the natural logarithm) and a law of large numbers which was foundational to the field of statistics, especially probability theory.  But he’s not the Bernoulli we’re talking about.

Johann Bernoulli was Jacob’s younger brother.  He shared his brother’s passion for the advancement of calculus, and was among the first to demonstrate practical applications in various fields.  So for engineers especially, he can share the blame for calculus with his brother.  But he’s not the Bernoulli we’re talking about either.

Johann’s son, Daniel, clearly got his father’s math smarts as well as his enthusiasm for practical applications, especially in the field of fluid mechanics.  His kinetic theory of gases is widely known as the textbook (literally) explanation of Boyle’s law.  And the principle that bears his name (yes, THIS is the Bernoulli we’re talking about) is central to our understanding of curveballs, airplane wings, and vocal range.

Bernoulli’s Principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in pressure (e.g., the fluid’s potential energy.)

  • In baseball, pitchers love it, and batters hate it.  When the ball is thrown, friction (mainly from the particular stitched pattern of a baseball) causes a thin layer of air to surround the ball, and the spin that a skilled pitcher puts on it creates higher air pressure on one side and lower air pressure on the other.  According to Bernoulli, that increases the air speed on the lower pressure side, and the baseball moves in that direction.  Since a well-thrown curveball’s axis of rotation is parallel to the ground, that means the ball drops as it approaches the plate, leaving the batter swinging above it, or awkwardly trying to “dig it out” of the plate.
  • The particular shape of an airplane wing (flat on the bottom, curved on the top) means that when the wing (along with the rest of the plane) is in motion, the air travelling over the curved top has to move faster than the air moving under the flat bottom.  This means the air pressure is lower on top, allowing the wing (again, along with the rest of the plane) to rise.
  • The anatomy inside your neck that facilitates speech is often called a voice box or vocal chords.  It’s actually a set of folds of tissue that vibrate and make sound when air (being expelled by the lungs when your diaphragm contracts) passes through.  When you sing different notes, you’re actually manipulating the area of air passage.  If you narrow that area, the air speed increases, making the pressure drop, skewing the shape of those folds so that they vibrate at a higher frequency, creating the high notes.  Opening up that area lowers the air speed, and the resultant increase in pressure lowers the vocal folds’ vibration frequency, making the low notes.
  • Bonus (because I work for EXAIR) Bernoulli’s Principle application: many EXAIR Intelligent Compressed Air Products are engineered to take advantage of this phenomenon to optimize efficiency:
The high speed of the air exiting the (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier creates a low pressure (just like Daniel Bernoulli said) that causes entrainment of an enormous amount of air from the surrounding environment.  This maximizes flow while minimizing consumption of your compressed air.

If you’d like to discuss Bernoulli, baseball, singing, or a potential compressed air application, give me a call.  If you want to talk airplane stuff, perhaps one of the other Application Engineers can help…I don’t really like to fly, but that’s a subject for another blog.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

316 Stainless Steel Products- Always in Stock

Metallurgically speaking, stainless steel is a steel alloy with the highest percentage contents of iron, chromium and nickel, with a minimum of 10.5% chromium content by mass, and a maximum of 1.2% of carbon by mass.

Stainless steels are widely regarded for the corrosion resistance that they exhibit. As the chromium content is raised, the corrosion resistance increases as well. The addition of molybdenum also increases the corrosion resistance to reducing acids and against pitting attacks in chloride solutions. By varying the chromium and molybdenum content, different grades of stainless steel are produced with each suited for varying environments. Due to the resistance to corrosion and staining, stainless steel is ideal material for many applications, especially in the food, pharmaceutical, and chemical industries.

The 300 series stainless steels are considered chromium-nickel alloys and is the largest group and most commonly used. Of the different compositions within the 300 series family, Type 304 stainless is the most widely used followed by Type 316, which has 2% molybdenum added to provide greater resistance to acids and to localized corrosion caused by chloride ions.

Table below shows the nominal composition by mass content for 316 stainless steel

316 SS Table

Because 316 stainless steel provides a high level of corrosion resistance, resists pitting, and has good strength properties, EXAIR manufactures many of its products from 316 stainless steel material so that they can be used in the harshest of environments.

Of the EXAIR products these are available off the shelf in 316 stainless steel- Super Air Knife, certain sizes of Adjustable Air Amplifiers, numerous Air Nozzles, Line Vacs including the Sanitary Flanged style, NEMA Type 4X and Hazardous Location Cabinet Coolers. If you need one of our other products such as the Super Air Wipes or Vortex Tubes made in 316 stainless steel, just let us know. Of course we also have them made from Type 303 stainless steel, in stock and ready for shipment (and aluminum, too!)

gh_stainless-steel-super-air-knife-750x696.jpg
316 Stainless Steel Super Air Knife

And, you don’t have to wait months or even weeks, as we keep all of these in stock, ready for shipment.

If you have questions about any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB