The following short video is a brief overview of our VariBlast Compact Safety Air Gun. The VariBlast Compact Safety Air Gun’s unique design features a variable flow trigger allowing you to achieve varying levels of force from the same nozzle.

If you have any questions, please contact an application engineer at 800-903-9247.

The video below is a brief introduction to the EXAIR Efficiency Lab, a free service provided by EXAIR for customers within the USA and Canada.

If you have a single point blowoff that does not have an engineered nozzle, or if you have a wider format blowoff, manifold or home-made drilled pipe, contact an Application Engineer with EXAIR and let us help you to reduce your energy waste. Following are some examples of product where we have helped to save some serious air and reduced noise levels which heightens employee comfort.

The month of May, in 1977, was a great time to be ten years old. I was finishing up my fifth grade year, a pivotal one, thanks to Miss Walker, who ended up being my favorite teacher ever. She had a pet rat named A.J. that we took turns taking home for the weekend. She rewarded us for class performance by taking us outside to play softball on warm & sunny spring afternoons. I trace my love for math (and hence, my inspiration for a career in engineering) to the excitement she instilled in me for the subject…I was among the first to master the multiplication tables.

And then there was Star Wars. There were commercials for the movie and the toys and the merchandise on TV; I swear they ran every five minutes. A fast food chain released a series of posters (free with purchase) and every time a new one came out, Miss Walker promptly hung it on the classroom wall. None of us, her included, could hardly wait until the premiere. I could go on (and on and on and on,) but suffice it to say (for the purposes of this blog,) I’ve been a BIG fan ever since.

Which brings us to today…opening day for “Star Wars, Episode VII: The Force Awakens.” The first time, by the way, a Star Wars movie hasn’t premiered in the month of May, but I digress. The 10 year old inside me wants to go see it RIGHT NOW, but the grownup I have to be has a company Christmas party, two Boy Scout events, and a pre-holiday “honey-do” list to attend to first.

Of course, the “other” epic space movie series couldn’t resist launching THEIR new trailer this week…

All this talk about The Force (capital “F”) and the fact that I write this blog on company time has me thinking about compressed air applications that involve force (lower case “f”) and how using force (unlike “The Force”) is not always prudent.

This is the case in just about any blow off application that uses air under pressure. Open ended copper tubing, drilled pipes, etc., are common and easy ways to discharge compressed air for debris removal, drying, or cooling a part. But the fact is, they waste a LOT of the energy devoted to compressing the air by simply turning it into brute force and noise.

This is where EXAIR Intelligent Compressed Air Products(r) come in: by using the energy of the compressed air to entrain air from the surrounding environment, the total air flow is amplified, resulting in a high velocity blast, at minimal consumption. No; it doesn’t have the same amount of force as an open ended discharge device, but most blow off applications don’t need all that much force anyway.

“A long time ago, in a galaxy far, far away,” the continuing theme of the Star Wars saga is to use The Force properly. For the past 32 years, the continuing theme at EXAIR is to help you use the force (of your compressed air) properly. Let me know how we can help.

May The Force be with us all…this weekend, and always.

Being an Application Engineer at EXAIR you tend to do a good amount of return on investment (ROI) calculations. This is mainly to tell customers just how fast installing an EXAIR product on their system is going to pay its purchase price back and start saving them money.

In order to do these calculations there are several variables we must know. The list is below.

Cost of EXAIR Product (This is an easy one for us to know.)

Current Product Consumption (If this is an unknown, we will test it for free!)

Cost of Compressed Air / 1,000 SCF (This is the most common unknown.)

With these four variables we can calculate the amount of air and the amount of money the EXAIR product will save over an existing non-engineered blowoff. Let me address the two variables which have to come from you, the customer.

Current Product Consumption – If this value is not known please don’t guess at it. We offer a free service which we refer to as our Efficiency Lab where you send us in your existing blowoff device and we will test it for force flow and noise level. If you don’t know what pressure you are operating the piece at we will help you find out how to get that and then we will test our products at the same pressures. This way you get a true apple to apples comparison. Then, once we are done testing, you will get a recommendation from us in a formal report as to what EXAIR product will best replace your existing product. Then we will pay for return shipping of your blowoff device back to you. So, if you don’t know how much air you are currently using then give us a call. We will figure it out for you.

Cost of Compressed Air/ 1,000 SCF – This is more often than not, the unknown variable in the equation. The good news is there is a general standard assumption of twenty-five cents per 1,000 Standard Cubic Feet of compressed air. This works out to be around 8 cents per kW/hr. So even if you don’t know what you pay to compress the air, if you know what you are paying per kilowatt hour for your energy then we can calculate within reason what it costs for you to generate your compressed air. For reference, 8 cents per kilowatt-hour falls between the average US cost per kilowatt hour for commercial end-users (10.7/kWh) and industrial end-users (6.9/kWh).*

The best part of all is…EXAIR has a calculator available right on our website which provides air and dollar savings per minute, hour day and year as well as a payback in days for the EXAIR product purchase. On top of that, any step along the way that you aren’t sure of, we will help you out for free, even testing your product!

In case you would like to see the math, the formula used is below.

In case you weren’t aware, the answer to “How much force does it take?” is always going to be, ALL OF IT. At least that is what we generally think when trying to blow product off a conveyor belt or diverting parts into bin, etc. Speed and efficiency play a direct role in to what nozzle or blow off device you should use in order to get the job done and be able to repeat the process.

The question we are often asked by customers is, “How much force to I need to move this?” That is a question that we cannot often answer without asking more questions. The good part of this is, there is a formula to calculate just how much force you need to move an object. A good video explaining friction is shown below.

In order to answer the question of how much force do I need, we really need to know all of the following:

Weight of the object
Distance from target
Is it on an incline or level
Distance needed to move
Then, the usually unknown variable, the coefficient of friction between the target and what it is sitting on.

Often times it is the thought process of, my target weighs 5 pounds, I need 5 pounds of force in order to move it from the center of this conveyor belt to the edge, this is not the case. If you wanted to lift the object over a break between two conveyors then you would need slightly more than 5 pounds in order to ensure you are lifting the front edge of the unit high enough to meet the other conveyor.

Whether you know all of the variables or only a few, if you need to get an object moved and you want to try using compressed air to do so, give us a call and we will help you find the best engineered solution for your application. Then, we’ll back all stock products with a 30 day guarantee if you don’t like how the system performs – but rest assured, we get it right almost every time.

I assisted with an application where logs were being shaved to make thin laminate. Because the logs were non-concentric or entirely smooth, the beginning of the sheet was riddled with scrapes and defects until it was about 8 foot (2.4 meters) long. This was a very quick process, and once good product was coming from a shaved log, the machine would divert the material from the scrap bin to the production feed line with a nip roll. At the speeds that the material was traveling, they needed to kept pressure on the leading edge of the sheet so that it would not “curl” up before the nip roll closed and grabbed the sheet. The drive rolls were pushing the laminate product toward the nip roll and they needed to keep the curl pushed flat along a plate and wondered if we had a product that could accomplish this.

We suggested a series of 2” flat air nozzles, model 1122, to keep the product pressed down on the plate with the force from the airflow. In their trial runs, they tried to find the correct amount of air pressure to keep the product flat. Once they found the pressure required, they noticed that the thin and delicate laminate was getting damaged. Of course, it was just at the beginning length when it was being held in place as it slid into the nip roll, approximately 3 feet (0.9 meters). Like any company, they did not want to waste any more product and wondered if we had anything else that we could recommend.

Thus a question was presented, and a solution was needed. In thinking about this, it took me to my Michigan days where snow was abundant. When walking on snow, you would fall through, but if you had snow shoes, you could stay on top of the snow. This brought me to the factors of Pressure and Force. Like with the laminate, if a smaller area does damage to the product (boots through the snow), can we expand the area to keep it from being damaged (snow shoes on top of the snow).

With the application, we needed to apply the same force on the material. The equation for force is F = P *A (Equation 1), where F – Force, P – Pressure, and A – Area.

We can do an equality statement from Equation 1 which shows F = P1 * A1 = P2 * A2 (Equation 2). The amount of pressure required from other EXAIR products can be determined, i.e. if I can double the surface area, then I can reduce the pressure by ½. For model 1122, we can determine the pressure that was generated from Equation 1 and from the catalog data:

Imperial Units of Model 1122S.I. Units of Model 1122

F = 1.4 lbf (catalog) F = 0.624 Kg (catalog)

A1 = Length X Width A1 = Length X Width

= 5 inches X 2 inches (catalog) = 12.7 cm X 5.1 cm (catalog)

Now that we have all the information from model 1122, we can determine the pressure required for a different product to keep the force the same. With the 2” Super Air Amplifier, model 120022, it has a much larger footprint than the 2” flat air nozzle, model 1122. So, with Equation 2, we can determine the amount of pressure required. We will use model 1122 for our P1 and A1, and we will use model 120022 for P2 and A2. From the catalog data for model 120022, we get a target area as follows:

Imperial Units for Model 120022S.I. Units for Model 120022

A2 = pi * (diameter/2)^2 A2 = pi * (diameter/2)^2

= 3.14 * (5.15 in/2)^2 = 3.14 * (13.1 cm/2)^2

= 20.8 in^2 = 134.7 cm^2

When we apply the information to Equation 2, we get the following information:

Now that the area was increased like the snow shoes above, the pressure was reduced and no additional waste was incurred. Sometimes you have to think outside the igloo. As with any application or product, you can always contact us at EXAIR for help.

A brief video explaining just a few of the benefits to utilizing the EXAIR Flat Super Air Nozzles and how to change the shims which change the force and volume of flow out of the nozzle. Our shims and the adjustable air gap mean you can increase or decrease the volume of air flow and force without adjusting the inlet air pressure.