EXAIR’s Swivel Fittings Provide Precise Blowoff Positioning

swivel_extrusionblow_PRgrey_800pSQ
EXAIR’s smaller Swivel Fittings for the Atto, Pico, and Nano Super Air Nozzles

Are you tired of having to scrounge around the production floor for the right fittings to precisely position your air nozzle? Not only is it a pain to try and find the correct fittings, extensions, etc. but once you do the position of the nozzle is hard to adjust. To alleviate this problem, EXAIR has designed a variety of different sized swivel fittings that allow you to precisely position the nozzle, then easily tighten and lock into place.

swivel comparison
Don’t waste time using various pipe fittings to position your nozzle, use an EXAIR Swivel Fitting

EXAIR’s Swivel Fittings are available in 9 different sizes, from as small as 1/8” NPT male x M4 x .5mm female and up to 1” NPT male x 1” NPT female. The smaller swivels (M4-M6) are constructed of 316 stainless steel and the swivels ranging from 1/8 NPT – 1” NPT are available in 303 stainless steel. The Swivel Fittings allow for movement of 25 degrees from the center axis for a total movement of 50 degrees. This permits correct placement of the blowing angle, helping to optimize the performance of your blowoff process. With no gaskets or seals to wear out, there’s no maintenance required to maintain optimum performance.

Swivel Fittings

Swivels can be used on any of our Air Nozzles up to 1” and can also be used with the Adjustable and Super Air Amplifiers. By simply adding a “W” suffix to the part number, the correctly sized swivel fitting will be added to your order. For example, an 1122W would be one of our 2” Flat Super Air Nozzles with a ¼ NPT male x ¼ NPT female Swivel Fitting included. Stop wasting time trying to find the proper fittings and positioning for your blowoff nozzles! Contact an Application Engineer and get some of EXAIR’s Swivel Fittings on order today, available from stock.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Replacing a 1/4″ Open Copper Tube With a 2″ Flat Super Air Nozzle Leads To Quick ROI

The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility and up to 30% of that compressed air is wasted through inefficient operation. Open pipes or homemade blowoffs waste a ton of compressed air, resulting in high operating costs. By replacing these devices with an energy efficient, engineered solution, you can reduce this waste and dramatically cut energy costs.

For example, let’s look at the average operating costs for a single 1/4″ open copper tube. (If you don’t know you current energy costs, a reasonable average to use is $ 0.25 per every 1,000 SCF used, based on $ 0.08/kWh.

1/4″ Copper tube

A single 1/4″ open copper tube consumes 33 SCFM @ 80 PSIG and costs roughly $ 0.50 per hour to operate. (33 SCF x 60 minutes x $ 0.25 / 1,000 = $ 0.50). For an 8 hour shift, the total cost would be $ 4.00 ($ 0.50 x 8 hours = $ 4.00).

If we were to replace the 1/4″ open copper tube with our Model # 1122 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet, the air consumption would be reduced to 21.8 SCFM @ 80 PSIG. This may not seem like much of an air usage reduction, but when you look at the monetary, total cost of ownership for purchasing and operating the nozzle, the savings can quickly add up.

2″ Flat Super Air Nozzle

The operating cost for a 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet is $ 0.33 per hour (21.8 SCF x 60 minutes x $ 0.25 / 1,000 = $ .033) or $ 2.64 per 8 hour shift ($ 0.33 x 8 hours = $ 2.64).

We can now compare the operational cost between the 2 devices:

1/4″ open copper tube operating costs:
$ 0.50 per hour
$ 4.00 per day (8 hours)

2″ Flat Super Air Nozzle operating costs:
$ 0.33 per hour
$ 2.64 per day (8 hours)

Cost Savings:
$ 4.00 / day (open copper tube) –  $ 2.64 / day (2″ Flat Super Air Nozzle) = $ 1.36 savings per day

The Model # 1122 2″ Flat Super Air Nozzle has a list price $ 67.00 USD.

ROI or Return On Investment calculation:
$ 67.00 (Cost) / $ 1.36 (savings per day) = 49.26 days.

The 2″ Flat Super Air Nozzle would pay for itself in just over 49 days in operation. This is the savings for replacing just ONE 1/4″ open copper tube with an engineered solution! In most industrial plants, there could be several of these which presents even more opportunities to reduce the overall operational costs.

Our focus here at EXAIR is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you are looking to reduce compressed air usage in your facility, contact an application engineer and let us help you optimize your current system.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

A Brief History of the Air Compressor

Essentially compressed air technology was first used with the knowledge of how to start a fire.  Humans learned that to get the fire started, blowing helped the process, healthy human lungs can generate approximately .02 to .08 bar or .3 to 1.2 PSI.

At the beginning of the metallurgical age (approximately 3000 B.C.) a higher volume of air than what human lungs could produce was required to the reach the temperatures required to melt and form metals such as copper, tin, lead, etc.  This need lead to the hand-operated bellows, the first mechanical air compressor.  Approximately 1500 years later the more efficient foot powered bellows was developed.

33007143764_131090c6bb_o.jpg

The foot powered bellows was followed by water powered bellows and was the mainstay for more than 2000 years.  However as blast furnaces came into being the need for compressed air increased.  This lead John Smeaton in 1762 to design a water wheel that powered a blowing cylinder and this began to replace bellows.  In 1776 John Wilkinson developed an efficient blasting machine and this was the beginning for mechanically powered air compressors.

As time progressed the idea of transmitting energy via compressed air became acceptable.  This idea was demonstrated around 1800 when the newly invented pneumatic rock drill was used to tunnel 80 miles under Mt. Cenis to connect Italy & France by rail.  This was an extraordinary feat for the time and garnered global interest.  This event perpetuated great interest into pneumatic powered devices  and brought us the air powered motors, clocks and even beer dispensers!

While compressed air is capable of transmitting energy long distances and performing tremendous work it also referred to as the 4th utility in industrial plants due to its cost.  We at EXAIR have been promoting compressed air conservation and safety using highly engineered products for 35 years!  Our products wring the maximum of energy out of every SCFM fed to them by using air entrainment and the Coanda effect.  Not only are we conserving your compressed air we offer products that are quiet and can’t be dead ended which prevents air embolisms.

If you are interested in discussing conserving compressed air and/or compressed air safety, I would enjoy hearing from you.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Fluidics, Boundary Layers, And Engineered Compressed Air Products

Fluidics is an interesting discipline of physics.  Air, in particular, can be made to behave quite peculiarly by flowing it across a solid surface.  Consider the EXAIR Standard and Full Flow Air Knives:

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces serve to optimize the entrainment of air (4) from the surrounding environment.

If you’ve ever used a leaf blower, or rolled down the car window while traveling at highway speed, you’re familiar with the power of a high velocity air flow.  Now consider that the Coanda effect can cause such a drastic redirection of this kind of air flow, and that’s a prime example of just how interesting the science of fluidics can be.

EXAIR Air Amplifiers, Air Wipes, and Super Air Nozzles also employ the Coanda effect to entrain air, and the Super Air Knife employs similar precision engineered surfaces to optimize entrainment, resulting in a 40:1 amplification ratio:

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

As fascinating as all that is, the entrainment of air that these products employ contributes to another principle of fluidics: the creation of a boundary layer.  In addition to the Coanda effect causing the fluid to follow the path of the surface it’s flowing past, the flow is also affected in direct proportion to its velocity, and inversely by its viscosity, in the formation of a boundary layer.

High velocity, low viscosity fluids (like air) are prone to develop a more laminar boundary layer, as depicted on the left.

This laminar, lower velocity boundary layer travels with the primary air stream as it discharges from the EXAIR products shown above.  In addition to amplifying the total developed flow, it also serves to attenuate the sound level of the higher velocity primary air stream.  This makes EXAIR Intelligent Compressed Air Products not only as efficient as possible in regard to their use of compressed air, but as quiet as possible as well.

If you’d like to find out more about how the science behind our products can improve your air consumption, give me a call.

Protect Personnel from Noise with Engineered Products

Sound can be defined as vibrations that typically travel as an audible wave through mediums that can be a gas, liquid or solid. For this blog we will concern ourselves with sound travelling through a gas (atmosphere) in an industrial setting.

Sound is energy that travels in waves and is measured by its frequency (cycles per second) and amplitude (intensity). A common unit of measurement for sound energy is the decibel. The decibel (abbreviated with dBA) is a unit-less number that is based on the logarithm of a known measured quantity to a reference quantity. Without reciting the equation for every increase of 3 dBA is a doubling of sound energy or twice as loud.

Since our focus is on industrial sound one might question why be concerned at all, after all sound emanates from most machines and devices. The reason for concern is that there are OSHA regulations regarding the amount of time workers can be exposed to different levels of sound in their workday as illustrated below. These limits are in place to protect personnel from Noise Induced Hearing Loss or NIHL. When the damage to anyones hearing is caused by their profession, it is also referred to as Occupational Hearing Loss or OHL.

After monitoring for noise, NIOSH and the CDC next recommend administrative controls to minimize or eliminate the noise hazard (click for their helpful PDF). This would include the use of noise reducing EXAIR products like Super Air Nozzles, Air Knives and Air Amplifiers.

dBA Chart.JPG
OSHA Maximum Allowable Noise Exposure

When considering the many items in an industrial setting that produce loud sounds the list would be exhaustive. Many of them simply produce loud sounds that can’t be eliminated or reduced while on the other hand there are some that can. Some of the noisiest offenders that plants have control over are air powered tools and open tube blow-offs.  Eliminating inefficient methods of part blow off & part cleaning with an engineered solution allows a company to significantly reduce the level of sound in their plant, improve worker safety and save money on compressed air consumption.

Employers are required to provide hearing protection to employees whom are exposed to sounds above 90 dBA on a Time Weighted Average (TWA). Without digressing into the formulas TWA calculates a workers daily exposure to occupational sounds by taking into account the average levels (in dBA) and the time exposed to different levels.  This is the how OSHA assesses workers exposure and what steps should be taken to protect the workers.

To conclude, plants need to be mindful of the OSHA regulations for sound levels, time of exposure and that hearing protectors wear out. Earmuff seals can lose their elasticity and reduce their effectiveness and the soft pre-molded earplugs can wear out in a day and need replaced.  Keep a good supply on hand and OSHA suggests letting workers with noisy hobbies take them home for protection off the clock!

If you would like to discuss reducing noise or any EXAIR product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

The Case Is Mounting For Stay Set Hoses

So, you’ve selected a quiet, efficient, and safe EXAIR Super Air Nozzle for your blow off application – good call! – and now you’re thinking about how to install it.  Sometimes, it’s as simple as replacing whatever you’re using right now:

EXAIR Intelligent Compressed Air Products have common NPT (or BSP) connections, making for easy replacement of most any existing threaded device.

Or maybe you’re using an open end blow off…in which case, you’re just an adapter away:

EXAIR Super Air Nozzles are quick and easy to install on existing copper tube, via a simple compression fitting.

Perhaps, though, it’s a new installation, or the existing supply lines aren’t suitable for one reason or another.  In those cases, we’ve still got you covered…consider the EXAIR Stay Set Hose:

Precise aiming and location is a breeze with EXAIR Stay Set Hoses.

Available in a variety of lengths from 6″ to 36″, they’re positionable, and re-positionable with a simple bending action.  They won’t kink or easily fatigue like copper tubing.  The supply end is 1/4  MNPT, and you have your choice of 1/4 MNPT or 1/8 FNPT on the other end, depending on which Super Air Nozzle, Air Jet you need to use it with.

We also offer Blow Off Systems, which are a combination of a specific Air Nozzle (or Air Jet,) fitted to a Stay Set Hose:

Model 1126-9262, for example, is a Model 1126 1″ Flat Super Air Nozzle with a 9262 Stay Set Hose.

For added convenience and ease of installation, these products can also come with a Magnetic Base:

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

Stay Set Hoses are also available with a variety of our Soft Grip Safety Air Guns, and they make the GEN4 Stay Set Ion Air Jet one of our most popular Static Eliminator products.  They’ve even been successfully applied with small Air Amplifiers and Air Knives…with certain limitations (spoiler alert: trying this with a 108″ Super Air Knife is going to be a definite “no.”)

Model 110003 3″ Aluminum Super Air Knife with 6″ Stay Set Hose & Magnetic Base.

From the beginning in 1983, EXAIR’s focus has been on being easy to do business with, and that goes from our friendly customer service to our expert technical support to our 99.9% on-time shipments (22 years and running) to designing our engineered products and value-added accessories with efficiency, safety, and ease of installation in mind.  If you want to find out more, give me a call.

EXAIR Provides Quick Blowoff Solution for Gauge Manufacturer

I was recently contacted by a manufacturer of custom measurement systems. They were working on a design for a system that could measure (2) different sizes of gears with a high degree of accuracy. A robotic arm would pick up the gear off of a conveyor and deposit it onto a gauge for inspection.

IMG_7328
The two gears being measured

During the initial quoting phase of the project they had been a little misled. They were told that the gears would be completely clean and free of debris before being deposited on the conveyor and picked up for inspection.  It turns out this would not be the case. Chips, oil, or debris remaining on the gear would result in false part rejection. With the required completion date looming, they reached out to EXAIR for some help in implementing a solution to clean the gear before inspection.

While blowing off the oil or chips from the gear was the primary concern, having this debris flying around inside the machine could have been problematic as well. We needed to find a way to contain the chips and remove them. In the process, there was a brief moment that the robot arm held the gauge in place just prior to depositing it onto the gauge. It was there that we identified an opportunity to both clean and remove the chips that were blown off the gear. Using a Model 1105 3/8 NPT Super Air Nozzle and Model 9068 Swivel, they were able to precisely position the blowoff to hit across the bottom of the gear where the chips were located. They then 3D printed a shroud to contain the area where the gauge was held and the blowoff would be performed. They designed the shroud with a 1-1/4” outlet to connect directly to our Model 6082 Line Vac. The intake of the Line Vac was installed right at this point and was set to activate as soon as the air nozzles began their cleaning cycle. The chips were blown off of the gears, contained by the shroud, and taken away to a bin underneath the machine by the Line Vac. The crisis was averted!!

This was the first time they had implemented some type of method to clean the part before measuring. In the past, they had lost potential projects due to the inability for them to provide a clean part for measurement. With this newfound method of part cleaning, they’re now able to be a more complete solutions provider to their customers. They’re able to design the part cleaning feature into the process from the start, rather than retroactively as they had to do here.

6082
Model 6082 Aluminum Line Vac

At EXAIR, we understand how problems can crop up during design and cause potential delays in the completion of a project. For this reason, we keep all of our catalog products in stock and ship same day with an order placed by 3:00 pm EST. This customer was local and was able to call in with a problem, determine a solution, and come pick up their order the same day. If you are having difficulty cleaning or drying machined parts, give us a call. EXAIR has the solution, in stock, ready to ship to you immediately.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD